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ABSTRACT

The development and investigation of a new affinity proteomics probe and methodology
are presented in this dissertation. A trifunctional affinity proteomics probe (TAPP) was
envisioned and prepared to serve as a lectin capture reagent. The TAPP consists of a solid
support to serve as a handle for captured protein as well as scaffold for multivalency, a
saccharide of interest to fish for an unknown or elicit a suspected specific interaction, and a
photoactivated cross-linking moiety to covalently capture binding proteins. The perfluorinated
phenylazide cross-linker was shown to exhibit better performance relative to the parent
phenylazide with respect to sensitivity and selectively for specific and nonspecific interactions.
The synthetic strategy included coupling of the saccharide signal as late as possible in the
preparation to allow for ease of diversification of the saccharide signal. Such a strategy could be
exploited with automated combinatorial chemical synthesis of oligosaccharides to quickly build
a diverse series of probes for study. Synthesis of several galactose and galactosamine based
monosaccharide donors are presented in this dissertation with the potential to be used to create
an array of six oligosaccharides from the nematode Caenorhabditis elegans. Solution phase,
automated synthesis was employed to test the building blocks, and to investigate current methods
to accomplish the formation of a 3,4,6 glycosidic branching pattern on a singular

monosaccharide unit. Results suggest such a glycosylation reaction is, indeed, possible.
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CHAPTER |

REVIEW OF GLYCAN FUNCTIONS AND LIMITATIONS OF THEIR STUDY

General Introduction

Very few roles of carbohydrates in biological systems are well understood or known
(\Varki 2009). General knowledge may consider them as being functionally insignificant
structural feature of proteins and DNA, or as an energy source (Lee 2006, Lee 2009, Varki
2009). The roles of carbohydrates in biological systems are much broader and are in many cases,
critical to the proper functions of these carbohydrate containing structures, or glycoconjugates
(Figure 1.1) (Elbein 1991, Lee 2009, Oberg 2011). Glycans, the carbohydrate portion of a
glycoconjugate, are found as constituents of all other well studied biological macromolecules:
lipids, proteins, and nucleic acids (Varki 2009). While ubiquitous in biological systems,
carbohydrate study lags significantly behind in understanding relevant or important structural
and/or functional features compared to proteins and nucleic acids. Interest in glycomics is
growing among the scientific community and considerable efforts have been made to elucidate
the biological relevance of glycans (Lee 2006, Lee 2009) . Glycans have been implicated to
contribute to molecular recognition, cell-cell recognition and adhesion, and cell signaling
functions that are vital for cell proliferation as well as pathogen infection in hosts (Disney 2004,
Gama 2006, Green 2007, Lee 2009). The study of this class of biomolecules remains a
significant challenge for many reasons; methodologies for probing these interactions suffer many

limitations and obtaining carbohydrates of interest is not a trivial task.
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Figure 1.1 General overview of some glycan roles in living systems. Hexagons
represent generic monosaccharide units, this figure does not represent any specific interaction.

Figure adapted from www.biochem.emory.edu/glycomicscenter.

Current Methods and Limitations

Identification of carbohydrate roles in biological systems have shown that glycans

frequently act as substrates for lectins or bacterial adhesins (Berthet 2012). Lectins are proteins

www.manharaa.com




that have a binding motif that binds selectively to specific carbohydrates and are considered to be
the foremost interaction between cells with other cells directly or indirectly, such as interactions
mediated by antibodies (Green 2007), . Similarly, bacterial adhesins are found on the surface of
bacterial cells, and also are responsible for mediating cellular adhesion, which is regarded as the
first essential step to pathogen infection (Rohde 2013). Identification of the binding pairs
responsible for these interactions facilitates the development of therapeutics with applications
ranging from treatment of autoimmune disorders (Green 2007) to attenuating pathogen infections
(Pieters 2007). To this end, methods have been developed, however they are limited by several
factors.

Many of the interactions of interest take place on the surface of a cell, and as a result, the
protein or glycan involved in the interaction is usually tethered to the cell as part of a larger
complex. Proteins are typically pili or fimbriae bound making isolation for identification
problematic because these sorts of protein complexes do not resolve very well with methods like
gel electrophoresis (Ilver 2003), the structural conformation may change in solution, and
solubility issues can also occur (Smith 2011). Glycans involved in recognition events are
typically glycolipids or glycoproteins. The sheer heterogeneity of glycolipids make them very
difficult to analyze as mixtures, but methods have been used to do so. However, these methods
are prone to miss identifications due to loss of multivalency or poor resolution and mis-
identification of the signal (Ilver 2003). The glycans present on a glycoprotein are heterogenic,
so after binding is shown, the binding glycan remains ambiguous. Subsequent fractionation of
the glycoprotein to isolate the individual carbohydrates results in loss of multivalency and thus

binding avidity (llver 2003).
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Multivalency has been described as the multiple interactions between two entities arising

from an identical signal and receptor pair (Krishnamurthy 2006). Due to the cooperative effects

2t ty
k 2ty
d

avichiy
kl“dnl Y

Figure 1.2 Comparison of monovalency to multivalency. Figure adapted from

Krishnamurthy 2006.

of multiple binding events, the observed binding between two bodies is much greater than the
individual affinity for each signal/receptor interaction. Literature uses the dissociation constant,
kg, @s @ measurement for host/guest binding (Figure 1.2)(Kitov 2003, Krishnamurthy 2006). A
typical kg for monovalent interactions, described as k&™, is on the order of mM to pM. The
observed multivalent interaction, k™™, will typically be on the order of nM (Krishnamurthy
2006). Briefly, the enhancement of the binding affinity is thought to arise from the idea that

each binding event will produce the nearly similar enthalpic stabilization while the entropic
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Figure 1.3 General explanation of enhanced binding in multivalent systems.
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penalty is greatly reduced after the initial binding event, and mildly reduced after each
subsequent binding event for a multivalent host guest pair (Figure 1.3)(Krishnamurthy 2006).
This principle explains why multivalent interactions drive Gibbs free energy of binding to be
more and more negative (favorable).

Currently, very few methods currently exist that can identify a binding pair from its
native environment (llver, 1998) but that method was extremely specific to those conditions, and
multiple proteins were identified and further knockout experiments were necessary to identify
the proteins (llver 2003). Identity of necessary binding proteins is typically confirmed through
gene knockout experiments combined with some assay to study an interaction of interest (Dani
2012). Systematic knockouts of genes to identify essential binding proteins is not an effective
method due to several reasons: knockouts can be deleterious to the organism, concomitantly
giving no information about the gene's function; knockouts of similar or identical genes in one
organism does not produce the same results in another; the background genotype of the organism
may be responsible for the phenotype and not the induced mutation, causing misinterpretation of
the results; and the gene may encode for a protein that is involved upstream of the phenotypically
observed result giving more importance to that gene and ignoring the effects of others involved
(Gerlai 1996). If there is some existing evidence that suggests a binding partner, more facile and
robust methods are available . They usually require isolated carbohydrate (or a heterogeneous
carbohydrate mixture) and binding protein with suspected specificity for the presented
carbohydrate(s)(Chaubard 2012, Liu 2009, Martos-Maldanado 2013). Typically they require at
least one of the binding pairs to be homogenous, if not both, and almost all methods cannot

distinguish the active carbohydrate epitope or peptide responsible for binding from their
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respective mixtures. A high throughput method could help narrow potential genes for knockout
studies if at least one binding partner was discernible from a heterogenic mixture.

It’s common that following isolation and the subsequent experiments to elucidate
structure, synthetic methods are often employed to verify the specific binding structure
(Meloncelli 2011). These identification experiments take considerable time. Most of the rapid
identification techniques used in proteomics or genomics make use of mass spectrometry, but
due to the isobaric nature of carbohydrates, rapid identification techniques are not currently
available. Thus is makes since that most of the known binding experiments frequently use

purified carbohydrates with attempts to probe protein receptors.

Obtaining Carbohydrates

Isolation of glycoconjugates from natural sources is a very tedious process that often
results in relatively small amounts of heterogenic mixtures of glycoconjugates. As a result,
subsequent experiments will retain some level of ambiguity in important structure function
relationships. There have been efforts in the analytical field to develop reliable methods to
purify mixtures, but such separations are far from trivialized (Yu 2012). Well defined chemical
structures can be obtained by synthetic methods but also suffers from significant challenges.

Carbohydrates are linked through glycoside bonds which incorporate the anomeric
carbon of one monosaccharide with an alcohol of another monosaccharide. Many carbohydrates
involved in glycoconjugates have, on average, five hydroxyl groups available for glycosidic
bond formation, which give rise to five regioisomers possible for any given pair of

monosaccharides. The stereochemistry at the anomeric carbon can also vary, further adding
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complexity to oligosaccharide structure. Typical synthetic routes to oligosaccharides originate
from natural monosaccharides, provided they are available and economically feasible, which
undergo a series of manipulations to protect hydroxyls to exclude them during the glycosylation
of two monosaccharides. The synthetic routes can vary depending on monosaccharide and
desired linkage, but it is not uncommon for 8 or more transformations to be necessary to obtain a

suitable monosaccharide for glycosylation.

%cceptor Donor
H 0
T
Donor . . %O PO~ Acceptor
POE/O Activator POD/Q 0
LG — %&

Debated oxocarbenium
cation

Scheme 1.1 Typical glycosylation between a donor and acceptor. The donor usually has some
leaving group that can be activated, orthogonally to other protecting groups, that allows for the
donation of the anomeric carbon to the hydroxyl nucleophile on the acceptor to form a glycosidic

linkage.

Glycosylation reactions are also poorly understood; the mechanism of which is actively
being explored and debated (Scheme 1.1) (Crich 2010). The typical glycosylation involves a
pair of monosaccharides, the donor, which donates its anomeric carbon, and the acceptor, which
bears an alcohol that accepts the anomeric carbon. The donor usually bears a leaving group that
can be selectively activated to from a reactive species that will react with a nucleophile to form a
covalent bond between the nucleophile and the anomeric center of the donor. The acceptor will

bear a free hydroxyl group for formation of the glycosidic bond. Diastereomeric selectivity in a
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glycosylation reaction is empirically understood and seemingly is dependent upon substrate,
protecting groups, leaving group, activation conditions, solvent, temperature, and concentration.
Considerable efforts may be necessary to achieve a desired linkage after preparation of the donor
or acceptor.

Oligosaccharide synthesis is, typically, iterative cycles of glycosylation followed by
deprotection of a specific hydroxyl on the resulting glycoside that was protected with an
orthogonal protecting group during the building block preparation. There are reported methods
that try to tailor the reactivity of building blocks, through choice of protecting groups, such that
they can do multiple glycosylation reactions in one pot without need for deprotection (Koeller
2000, Ye 2000). Despite the generation of a database through empirical testing of
monosaccharide donors and acceptors (Zhang 1999, Sears 2001), this method suffers from not
being able to have enough differentiation in reactivity between many of the acceptors to avoid

mixtures of products.

Automated Synthesis of Oligosaccharides

Synthetic challenges due to the complexity of carbohydrate structure have hindered the
development of automated synthetic methods that have already been successfully and efficiently
employed for the corresponding biological macromolecules: DNA, RNA, and proteins. There
are known examples of solid phase synthesis of oligosaccharides (Ranter 2002), despite the time
between its initial report, there are very few reports of exploitation of the methodology to access
novel and interesting carbohydrates. Typical conditions employing solid phase handles require

extreme excess of solution reagents to effect complete coupling that overcome the biphasic
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nature of the reaction. The preparation of reactive building is extremely limiting in
oligosaccharide synthesis a contributing factor in the lack of development in solid phase
approaches for oligosaccharide access. The optimization of reaction conditions to achieve
specific linkages in solution does not necessarily translate to solid phase reaction conditions. As
previously mentioned, the glycosylation reaction is dependent upon activation conditions,
concentration, and inherent substrate reactivity. All of these conditions are hard to control for

substrates on solid supports.

HO
HO
0 po=—2 %&%
LG_ Orthogonal _ ¢}
O\/j Glycosylation ~ Deprotection %O

CeF7” 0 T FSPE Purification O\/j
CeF17~ > 0

Scheme 1.2 General schematic for an iterative cycle of fluorous tag assisted automation

solution phase synthesis of oligosaccharides.

Solution phase automated synthesis has been recently explored as an alternative to
circumvent the troubles associated with solid phase automated synthesis (Scheme 1.2)(Pohl
2008). The method makes use of a perfluorinated alkane as a handle for isolation of synthetic
intermediates after each couple cycle in the preparation of the oligosaccharide. This method
allows for solution phase reaction conditions to translate well to automation as well limiting the
need of excess donor due to the homogenous reaction conditions.  Automation of carbohydrates
would propel the field of glycomics forward into a perspective of better understanding of the

roles of oligosaccharides in biological systems and the molecular basis for those interactions.
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Access to this class of biological molecules through automated methods would allow for
systematic investigation of structure-function relationships and the interactions of these
molecules in biological systems. It would also provide a means to construction of carbohydrate
libraries to probe detailed structure-function relationships. Insights into the basis of these
molecular functions could aid the development of therapeutics to treat a host of problems that are

related to oligosaccharide behavior.
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CHAPTER II
TRIFUNCTIONAL AFFINITY PROTEOMICS PROBES AS LECTRIN CAPTURE

REAGENTS

Introduction

The roles of many carbohydrates and glycoconjugates in biological systems remain
ambiguous despite the rapidly developing field of glycomics (llver 2003). Glycoconjugates
found on the surface of cells as abundant as they are diverse, owing that diversity to the innate
chemistry of oligosaccharides, and exhibit extraordinary binding specificities (Larsson 2000).
One immensely important function of glycoconjugates is to serve as a signal for many vital
cellular functions, such as cell-cell recognition. The first essential step to pathogen infection is
host cell recognition(llver 2003, Larsson 2000) which is mediated through the exploitation of
intimate signal-receptor pairs (Nizet 2009). ldentification of specific cell surface protein-
saccharide pairs involved in such events can provide insight into the mechanism of infection and
aid the development of therapeutic strategies (llver 2003). Herein we report the synthesis of
trifunctional affinity proteomics probes (TAPPs) for the identification of specific binding
proteins from protein solutions.

Efforts have been made towards developing methods to probe protein-saccharide specific
interactions, but these methods still suffer from limitations that often make them unreliable or
impractical (Ilver, 2003). For example, a thin layer chromatography (TLC) overlay assay has

been employed to identify glycolipid binding proteins in bacteria such as Shigella dysenteriae
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(Lindberg 1987, Soltyk 2002).This assay employs thin layer chromatography to separate a
heterogeneous mixture of carbohydrates, typically glycolipids, which are then stained with
radiolabeled bacteria. This method, however, no longer presents the carbohydrates to binding
proteins in the multivalent manner typical of cell surfaces (llver 2003). The dissociation constant
(Kg) for monovalent specific interactions is usually in the range of mM whereas the K4 for
multivalent specific interactions is in the nM range (Houk, 2003). This million-fold difference in
binding is the fundamental reason methods such as TLC overlay assay are inadequate for
detection of interactions dependent on multivalency, which is exemplified in the cases where the
binding partner escaped detection or was misidentified (Ilver 2003). A similar assay using gel-
electrophoresis to separate glycoproteins has been explored but faces many more shortcomings.
Glycoproteins, unlike glycolipids, have a diverse set of glycosides per molecule. Thus, the exact
identification of the carbohydrate is impossible without further fractionations and assays (llver
2003). Not only does this method suffer from being a lengthy procedure, once fractionated, loss
of multivalency occurs, allowing binding partners to evade detection. An affinity tag approach
has been used to capture lectins (Ilver 1998) and improved upon with a bottom-up affinity
proteomics approach (Larsson 2000) to identify binding proteins. This method use a bovine
serum albumin (BSA) core that has been covalently modified with oligosaccharides and a
photoactivated cross linking reagent, therefore circumventing the multivalency issue, but still has
its limitations. The protocols for preparing and employing the conjugated BSA core are not
general enough to be efficient for the continual increase of new pathogen targets (llver 2003).
Lectins are often found in low abundance and after the tagging require streptavidin enrichment
prior to separation using gel electrophoresis. Adhesins are often membrane or pilus bound and

do not typically resolve well with gel-electrophoresis (Ilver 2003). More recent efforts to solve
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these problems have been reported, but have yet to show diverse utility. One method involves
using modified biological pathways to incorporate derivatives of carbohydrates to capture
binding proteins in vivo (Yu 2012). Another employs photosensitizing nanoparticles conjugated
with a purified saccharide and protein of interest (Chang 2011). These methods present
significant constraints to throughput in detecting bacterial adhesins or lectins. The former
method involves modifying molecular pathways to tolerate non-canonical saccharides and
presumes the saccharide modification will not inhibit receptor recognition. The latter method
requires purified saccharides and protein receptors, and would not be directly applicable to
capturing unknown membrane-bound binding partners. A more versatile carrier capable of being
applied to pilus and membrane bound adhesins coupled with the bottom-up proteomics detection

would be a very powerful lectin capture reagent.

Results and Discussion

To achieve the goal of identifying carbohydrate-binding proteins with greater fidelity,
ideally a trifunctional affinity proteomics probe would need to be employed (Figure 2.1). To
meet the requirement of a bottom up proteomics approach a handle is required to purify captured
proteins. A solid phase resin confers the necessary properties to support such a general and
flexible lectin capture reagent.

The development of rinsing protocols that inhibit nonspecific interactions while leaving
specific interactions intact can be tedious and irreproducible, thus if a covalent bond can be
formed between the solid support and the binding protein, very stringent, denaturing, and

reproducible washing conditions are needed to remove matrix proteins without concern of losing
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binding proteins. This can be achieved by using one of the many known protein cross-linking
reagents in literature (Sinz 2006). Finally, the carbohydrate signal that is being used to probe for

receptors is the third functionality.

o Q 7 () Carbohydrate Signal

* Activatable Cross-Linker

Figure 2.1 Conceptual design of a trifunctional affinity proteomics probe (TAPP) to capture

lectins and adhesins

With this model in mind, two probes were devised, one bearing a-D-mannose (1) and the
other B-D-galactose (2), intended to be used as positive and negative controls, respectively, in a
simple model system to test the basic principle (Figure 2.2a). For characterization puprposes, the
resin coupling will be the final step, which would make benzoic acids 3 and 4 the penultimate

targets for 1 and 2, respectively.
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1R'=R*=0H,R2=R%=H TAPP-HMan 3R"=R*=0H,R2=R®=H HMan
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Figure 2.2 (a) Molecular design of TAPPs and (b) retrosynthetic analysis.

The two excitation maxima, of which the higher energy maxima is hypothesized to excite the
probe to an intermediate that does not form cross-links adducts (Buchmueller 2003). To simplify
characterization data of the probe, the central tethering moiety was chosen to be 3,5-
diaminobenzoic acid (7), which allows for three unique branches to be coupled without creating
regio- or stereoisomers, as well as being economically effective and providing convenient
handles for peptide coupling chemistry. The amide linkages were exploited for coupling the
three functional moieties together as the amide is a robust functional group and the final probe

would then mimic proteins and be suitable for the aqueous experimental conditions.
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Retrosynthetic analysis of TAPPs leads to a convergent synthesis (Figure 2.2b) in which the
saccharide coupling conditions can be effected as late in the synthetic scheme as possible to
make it as general as possible as well as be amenable to combinatorial chemical methods.
Synthesis of the aryl azide branch started with the well known para-azidobenzoic acid 10
(Pinney 1991). The acid was converted to the activated acyl chloride with phosphorus
pentachloride in anhydrous diethyl ether, the product of which was immediately subjected to a
solution of B-alanine in 1IN NaOH,q) which afforded 5 in good yield. The carboxy methyl
glycosides 8 (Cheaib 2008) and 9 (Listkowski 2007) are known compounds and were prepared
as reported. Preparation of the amine terminated polystyrene resin was achieved with standard
peptide coupling reagents, namely diispropylcarbodiimide (DIC) and ethylene diamine in N,N-
dimethylformamide. To ensure good loading, the resin was again subjected to the reaction
conditions. Verification of functional group transformation was done with Kaiser’s test (Kaiser
1970) which resulted in a deep blue resin indicative of a successful coupling of the diamine to
give the amine terminal resin (6), considered to be the result of the formation of a Schiff base
between the reagents and the amine functionality on the surface of the resin.
aforementioned saccharides were used in order to take advantage of well known interactions of
a-D-mannose with plant. lectin concanavalin A from C. ensiformis and the bacterial adhesin,
FimH, expressed by E. coli (Summer 1938). The cross-linking reagent used for this set of
experiments belongs to a well studied class of photoactivated cross-linkers: aryl azides
(Buchmueller 2003). The para-substituted phenylazide (5) was employed for its low cost and
ease of synthetic preparation. A commercially available carboxy-modified polystyrene (6) solid
support was utilized as it offers general coupling conditions, good loading capacity, and,

critically, low wavelength protection of the photo cross-linker. Aryl azides are known to exhibit
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T

1. PCls, Et,0
COH rt, 45 min 0 NWOH

2. 1N NaOH ©

HN~oH

0° C, 1hr N
10 thenrt, 3 hr 5
(67%)

N3

b /\/NHZ
2N

d cat. DMAP O)L
DMF

2 Cycles

Scheme 2.1 Preparation of the three functional moieties of the TAPP reagents.

With all three functional moieties in hand, exploration of coupling conditions originated
from the known ethyl 5-amino-2-(t-butoxycarbonyl)aminobenzoate 12 (Ishida 2001). The
preparation of 13 was achieved in a slightly modified procedure than the reported method. Ester
formation was accomplished with commercially available 7 and 3 eq. of conc. sulphuric acid in
anhydrous ethanol (Scheme 2.2) to give diamine 11. Selective mono-protection of 12 was
achieved with di-tert-butyl-dicarbonate in methylene chloride in the presence of triethylamine to
afford carbamate 12. Peptide coupling reagents were explored to effect the formation of the
desired amide bond. Initial efforts using DIC or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC) were unsuccessful (Table 2.1). Additives, such as N’,N’-dimethylaminopyridine
(DMAP), are known to enhance the reactivity of the intermediate complex, but DMAP was
ineffective in increasing the reactivity. Activation with N-hydroxybenzotriazole successfully
completed the transformation to the desired amide 13. However, later in the course of the

project, these conditions were abandoned for 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl
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uranium hexafluorophosphate (HATU), which was able to perform the transformation in a

considerably shorter reaction time.

HO__O 3eq.H,80, ~_0O._0O CH,Cl, ~_O- 0
EtOH, reflux 1.3 eq. (BOC),0
18h iPr,NEt -
H,N NH, (84%) H,N NH, 8h H,N NHBoc
7 11 (74%) 12

Scheme 2.2 Synthetic strategy for the TAPP scaffold.

Table 2.1 Explored coupling conditions.

N3
H
0._0
o~ © N\/\[(OH Coupling Reagent
. 0] Additive _ NHBoc
H,N NH Et;N /C N0
BOC N, DMF ~_O N
o H
12 5 13
Coupling Time Temperature Yield?
Entry Additive
Reagent (hr) (°C) (%)
1 DIC DMAP >96 25 N/A
2 DIC DMAP >96 60 N/A
3 EDC HOBt 96 25 95
4 HATU - 60 25 92
5 HATU - 40 40 96

®N/A indicates no isolated product 13.

Acid-mediated cleavage of the boc carbamate protecting using trifluoroacetic acid (TFA)

and subsequent basic work up afforded amine 14 in good yield (Scheme 2.3). The previous
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peptide coupling conditions were again employed for each of the carboxy methyl glycosides, a-
D-mannoside 8 and B-D-galactoside 9, to furnish the protected probes 15 and 16, respectively, in
good yields. The deprotected acids 3 and 4 were obtained by global hydrolysis of the ester
protecting groups using saturated aqueous potassium carbonate and methanol. Solid phase
functionalization was affected in two 24-hour coupling cycles, each using five equivalents of
probe relative to the carboxylate sites on the resin and HATU in DMF. The extent of coupling

was probed using the phenol sulphuric acid assay (Table 2.2) (Dubois 1956).

N3 R, OAc

R N3
R, o)
HATU AcO 0o
NHR TEA Rz
- - O\)J\NH
N0
o L e y o
AN N o) (8or9) o H
o H O N0
S H
13R=Boc 7 1, 15R1=R4=0Ac,R2=R3=H (78%)
DOM 16 R1=R4=H, R2=R3=O0Ac(83%)
(82%)
14R=H sat. K,CO3(aq)
MeOH
OH
Rs R \ N3
R, o
HO o]
R2
O\)LNH
Ly
HO N0
o H

3R1=R4=0H,R2=R3=H (92%)
4R1=R4=H, R2=R3=O0H (62%)

Scheme 2.3 Final synthetic procedure for TAPP-HMan and TAPP-HGal.
Cross-linking experiments were performed in glass test-tubes pre-treated with BSA to
minimize interactions of ConA with the test tubes’ glass surface (Varmette, 2010). One

milligram of probe was suspended in PBS buffer. The test tubes were incubated for 16 hours in
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Table 2.2 Extent of resin loading.

Probe Loading (ug probe/mg resin) Error (ug probe/mg resin)
TAPP-HMan 70 3
TAPP-HGal 44 1
TAPP-FMan 52 1
TAPP-FGal 63 1

the dark. They were then irradiated with a 350 nm broadband source for 2 hours at 37 °C. The
probes were then rinsed with a series of solutions of an aqueous DMSO gradient, three cycles
each (10, 25, 50, 75% aq. DMSO). Each cycle consisting of vortexing with the rinsing solution
then centrifugation at 12,000 RPM for 10 minutes followed by removing the supernatant. The
resins were finally rinsed with pure DI water three times to remove any DMSO before the tryptic
digest. The resulting peptide mixtures were then analyzed with MALDI-QTOF. The results
from the MASCOT database search of the MS/MS data resulted in scores well above the 95%
confidence level for the presence of ConA captured by both probes (Perkins 1999) (Appendix
D). Initial results would suggest one of two things: either the employed analysis was not
adequate for detecting the discrepancy in specific and non-specific interactions or the underlying
chemistry in the capturing probe was not selective enough.

Fluorinated probes have shown to be more useful in such applications due to their difference
in photochemistry (Schnapp 1993). The singlet nitrene lifetime in perfluorinated probes are
sufficiently longer to form C-H insertion products that give rise to more useful cross-links

relative to the reactive ketenimine of the parent aryl azide. To further improve upon the initial
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experiments, relative quantification methods should be employed to provide objective definition
between specific and non-specific interactions (Zhu 2010).

Preparation of the fluorinated probes originated from the known NHS ester 17 (Norberg
2009). Displacement of the NSH ester with B-alanine was achieved in aqueous triethylamine
(Scheme 2.4) with high yield of amide 18. Synthesis of the fluorinated probes mimicked the
parent aryl azide without any complications. After obtaining 23 and 24, coupling to the resin
was done with HATU to produce the final resin bound TAPP-FMan, 25, and TAPP-FGal, 26
(Scheme 2.5). The extent of loading for each probe was quantified with the phenol sulphuric

acid assay (Table 2.2).

oé\/;xo

o) o OH H

19 R = Boc
0.0 T 12, HATU O N N NHR TFA
HZN/\)J\OH . Foo Y DCM

ZT
T

IPr,NEt
F F - - __ - _F F O 2R <H (81%)
E,_Fg F F DMF CO,Et
2 (98%) F F
F F (87%) N3 °
N N3 8or9
s 18 HATU
17 IPr,NEt
DMF
RS OH 3 OAc
R! N3 R R! N3
R* 0 F F R* 0 F F
HO » 0 sat. K;COz(aq)  ACO A 0
o) R
A . £ MeOH o . .
i Qi
HO
N“~o ~© N0
(6] o) H
23R'"=R*=OH, R2=R3=H (86%) 21R'"=R*=0Ac,R?=R%=H (68%)
24R'"=R*=H, R2=R%=O0H (76%) 22R"'"=R,=H, R?=R3%=0Ac (91%)

Scheme 2.4 Synthesis of the fluorinated TAPPs

All four probes were subjected to the same incubation, cross-linking, rinsing, and digest

protocol as described earlier. An aliquot of the samples obtained from the tryptic digestion were

subjected to nano-LC ESI-lon Trap. The obtained MS/MS spectra were analyzed using a
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MASCOT database search. Several fragments were matched as belonging to the parent protein,
concanavalin A from C. ensiformis. The peptide chosen for relative quantification using the
extracted ion chromatogram (EIC) was selected due to its ubiquitous nature. The extracted ion
chromatogram was obtained by using Thermo Scientific Xcalibur and extracting the
chromatogram to a range £ 0.5 Da from the experimentally determined M/Z corresponding to

ubiquitously matched fragment with sequence VGLSASTGLYK.

R3 OH
1

R N3
R* 0
R3 ole N, o J/NHZ HO : o X X
4 o} R*0
EoéR 0 X X O)LN \)kNH X X
H
RZO
QkNH X X H /\E\H 0
N
N" o HATU, Et;N 9 J/ N~ "o
HO H DMF, rt, 24 h N 0
” 6] 2 Cycles H
o]
3 R'=R*=0H,RZ=R3®=X=H 1 TAPP-HMan R'=R*=OH,R?=R3®=X=H
4 R?=R®=0H,R'=R*=X=H 2 TAPP-HGal R?=R®=O0H,R'=R*=X=H
23 R'=R*=0H,R?=R3=H,X=F 25 TAPP-FMan R'=R*=OH,R?=R%®=H,X=F
24 R?=R3=0OH,R'=R*=H,X=F 26 TAPP-FGal R?=R%=0H,R'=R*=H,X=F

Scheme 2.5 Coupling of probes to solid phase resin.

The retention times were validated comparing the MASCOT database search matched peak
list for the fragment to the individual MS/MS spectra obtained at given retention times and are in
good agreement (Table 2.3). The EIC was then integrated over the area in which the parent ion’s
signal to noise ratio was at least 3:1 (Table 2.4) (Appendix C). The peak areas were normalized

by dividing the peak area by the largest peak area in the data set.
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Table 2.3 Retention times (Min.) for peptide fragment VGLSASTGLYK for each sample.

Probe 123 nmol 24.6 nmol 12.3 nmol 2.5 nmol
TAPP-HMan 16.08 16.03 16.13 N/A
TAPP-HGal 16.01 16.00 16.01 N/A
TAPP-FMan 16.13 15.88 16.04 16.09
TAPP-FGal 16.10 16.16 16.19 N/A

corresponding to matched peptide VGLSASTGLYK.

Table 2.4 Normalized peak areas of the extracted ion chromatogram for the mass +0.5 Da

Probe 123 nmol 24.6 nmol 12.3 nmol 2.5 nmol
TAPP-HMan 0.35+0.02 0.30+0.01 0.10+0.04 N/A
TAPP-HGal 0.17 £ 0.04 0.09+0.01 0.04 +0.01 N/A
TAPP-FMan 1.00 + 0.03 0.55+0.01 0.38 £0.03 0.07 £0.03
TAPP-FGal 0.17 +0.03 0.12+0.01 0.07+0.01 N/A

The signal to noise ratio in the case of the minimal amount of probe used in the tryptic digest

for TAPP-HMan, TAPP-HGal, and TAPP-FGal was so low for the matched peptide, no
discernible peaks for integration were able to be identified from the background with confidence.
The normalized peak areas suggest the fluorinated aryl azide out performs the parent aryl azide

in selectivity, in all cases exhibiting a 5:1 ratio in peak area for the positive control to the
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Normalized EIC Peak Areas

1.2
o 1 &
T
L
« 0.8
© B TAPP-HM
& 06 -
v B TAPP-HG
k™ 0.4 I TAPP-FM
o

0.2 1 . - B TAPP-FG

I
0 - :
123nM 24.6n1M 12.3nM 2.46 nM

nmol Probe Used

Figure 2.3 Normalized peak areas for TAPP probes are various amounts of resin used for the

experiment.

negative control. The discrepancy between the positive and negative controls for the parent aryl
azide for the maximum subjected probe was 3:2 and in the best case 9:2 for sample 3. The
sensitivity difference is apparent as the only probe to give quantifiable signal for the matched
peptide is TAPP-FMan at the lowest subjected probe amount.

Although no modeling was done to ensure capture by the probe is possible while con A was
bound, the probe and carbohydrate had relatively similar linker length thus it seems reasonable
that it is indeed possible. The difference in captured protein amounts should not be dependent on
the probe if it were not involved. The results suggest the captured protein is dependent upon the
probe chemistry, making it logical to implicate the photo probe in being intimately involved in

capturing the protein.
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Conclusion

A solid phase platform was successfully able to capture lectin capture reagents in a
selective manner for positive and negative controls. The method was shown to be sensitive and
efficient with costly materials, needing only 100 nm of probe to obtain useful data, which can be
achieved with 1 umol of material. Trypsin was shown to be able to cleave proteins off the
surface of the resin in adequate amounts for several nano-LC-ESI MS/MS runs for the case of
con A. Such an experiment produces data that can be analyzed with existing tools to extract
relative peptide concentrations across the samples.

The perfluorinated aryl azide probes were shown to have greater efficiency and
selectivity for capturing specific interactions relative to probes with the parent aryl azide. One
limitation of this method is that the proteins are only able to be relatively quantified across
samples and thus, one negative control would always be necessary to put the interaction of
interest in perspective. Sstudies involving multiple signals for comparison could prove to help
define a specific interaction much like work with microarrays (Smith 2013).

The utility of this method is highly dependent on the ability to directly capture surface
binding proteins. Combined with combinatorial chemical methods for carbohydrate production,
it would certainly create a versatile and facile tool for identification of host and pathogen

interactions.
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Experimental

General: All commercially available compounds were purchased from TCI, Sigma Aldrich, or
Fisher Scientific; they were reagent grade and used without further purification. HATU was
purchased from Accela ChemBio. For sensitive reactions, solvents were dried prior to use by
distillation from a suitable drying agent. Column chromatography was performed with ZEOprep
ECO silica gel 60 with 40-63 um particle size (American International Chemical). Reactions
were monitored using thin layer chromatography coated with a 0.25 mm layer of silica gel 60
F2s4 (Sorbent Technologies). Compounds were visualized with UV light and/or 5% v:v sulfuric
acid in ethanol. *H NMR and **C NMR were performed with either a Bruker Avance DRX-400
MHz spectrometer or a Varian VXR-400 MHz spectrometer, or otherwise noted. All *H NMR
peak assignments were made using solvent residual peaks as an internal standard (DMSO 6 2.50
ppm, CDCl; § 7.26 ppm, and CDs0D & 3.31) as were *C NMR peak assignments (DMSO §
39.51 ppm, CDCl3 § 77.31 ppm, and CD3OD & 49.00) and supported using *H-'H COSY
experiments as needed. High resolution mass spectra were obtained with a Finnigan TSQ700
for compound characterization. Mass spectroscopy data for protein identification was obtained

with a Thermo Scientific LTQ Velos Pro, a nano-LC-ESI ion trap instrument.

1. PCls, Et,0 H
CO,H t 4% min o) N\/\H/OH

2. 1N NaoH ©

H,N /\)J\OH

0° C, 1hr N
thenrt, 3 hr
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3-(4-azidobenzamido)propanoic acid (5): To a solution of p-azidobenzoic acid (2.06g,
12.6 mmol) in diethyl ether (60 mL) was added Phosphorus Pentachloride (2.68g, 12.9 mmol)
and let stir for 1 hour. The ether was removed in vacuo to yield a yellow residue which was
triturated with hexanes at 0° C to yield a pale yellow solid which was used directly in the next
step. To a solution of B-alanine (1.00 g, 11.26 mmol) in 1 N NaOH (23 mL) was added p-
azidobenzoyl chloride (1.13 g, 6.62 mmol) at 0 °C. The solution was let stir for one hour then
removed from the ice bath and let warm slowly to room temp (2 hours). The reaction was
brought to pH 3 using 1 N HCI in which a white precipitate formed. The solid was filtered and

recrystallized from ethanol to yield 5 as a pale yellow needles (0.97 g, 67% over 2 steps).

'H NMR (DMSO, 400 MHz): § 8.54 (1H, t, J = 4.8 Hz, Hy), 7.88 (2H, d, J = 8.4 Hz, Hp,), 7.19

(2H, d, J = 8.8 Hz, Hay), 3.47-3.42 (2H, m, Hy), 2.51 (2H, t, J = 7 Hz, Hy).

3¢ NMR (DMSO, 400 MHz): & 33.75, 35.60, 118.89 (x2), 129.07 (x2), 130.90, 142.24, 156.25,

172.92.

HRMS Calcd for [M+H]". 235.0825 Found: 235.0820.

HO O 3eq. H,SO0, ~_0._0
EtOH, reflux .
18h
H,N NH, (84%) H,N NH.,

Ethyl 3,5-Diaminobenzoate(11): To a solution of 3,5-Diaminobenzoic Acid (7.64 g, 50.21

mmol) in 200 proof Ethanol (300 ml) was added conc. Sulfuric Acid (8.37 mL, 150.6 mmol).
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The reaction was refluxed for 24 hrs. The ethanol was removed in vacuo. Iced cold water was
added (75 mL) to the residue and made slightly alkaline with the addition of solid sodium
carbonate. The aqueous layer was extracted with ethyl acetate (4x100 mL), washed with sodium
bicarbonate (3x250mL.), water (3x250mL), and dried over sodium sulfate. The ethyl acetate was
removed in vacuo to yield a dark amber residue. The residue was purified by column
chromatography (EtOAc:Hexane, 1:1) to yield an amber residue (7.59 g, 84%). NMR Matched

previously reported spectra (Ishida 2001).

1.3 eq. (BOC),0
iPr,NEt
H,N NH, 8h H,N NHBoc

Ethyl 5-amino-3-(t-butoxycarbonyl)aminobenzoate(12): To a solution of Ethyl 3,5-
Diaminobenzoate (5.02 g, 5.66 mmol) and Diisopropylethyl Amine (2.5 mL, 15.1 mmol) in
Dichloromethane at 0° C was added Ditertbutyldicarbonate (1.24 g, 5.68mmol) in 20 ml
dichloromethane dropwise over 30 minutes. The reaction was let stir for 8 hours at room
temperature and the solvent was removed in vacuo to yield a brown residue. The mono
protected compound was obtained with flash chromatography (EtOAc:Hexane 1:1. The resulting
fractions were pooled and concentrated in vacuo to yield a yellow oil which was triturated with
hexanes to afford a white solid. The hexane was filtered off and the compound was dried under
high vacuum to yield a white powder (0.932g, 74%). NMR Matched previously reported spectra

(Ishida 2001).
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H

o) NWOH N i \{/
2
5 g \{/ HATU
+ 0
Et;N, DMF

40°C, 40 h
oo o0
N3

Ethyl 3-(tbutoxycarbonyl)amino-5-(3-(4-azidobenamido)
propanamidobenzoate(13): To a solution of 5 (2.19¢g, 9.37 mmol), 12 (2.63 g, 9.37 mmol),
and HATU (3.92 g, 10.3 mmol) in DMF (20 mL) was added triethylamine (2.61 mL, 18.7
mmol) The reaction was warmed to 40 °C for 40 hours. The reaction was quenched by the
addition of water (100 ml). Ethyl acetate (50 ml) was added and the reaction was let stir
vigorously for 10 minutes. The layers were separated and the aqueous layer was extracted with
ethyl acetate (3x100 ml) and the combined organic layer was washed with sat. sodium
bicarbonate (3 x 300 ml), water (3 x 300 mL) and dried over sodium sulfate. The solvent was
removed in vacuo and the crude product was recrystallized with a mixture of ethyl acetate and

hexanes to furnish 13 (4.44 g, 8.94 mmol, 96%) as a white solid.

IH NMR (DMSO0, 400 MHz): 8 10.17 (1H, s, Huar), 9.61 (1H, s, Heaamate), 8.63 (1H, t, J = 4
Hz, Hnp-ak), 8.02 (1H, s, Har), 7.96 (1H, s, Har), 7.89 (2H, d, J = 12 Hz, Ha(), 7.74 (1H, s, Har),
7.19 (2H, d, J =12 Hz, Har), 4.29 (2H, q, J = 8 Hz, Hoch2), 3.57-3.50 (2H, m, Hcrp), 2.61 (2H, t,

J=8 HZ, HCHZCON), 1.47 (9H, S, HtBu), 1.30 (3H, t, J=8 HZ, HCH3)-
13C NMR (DMSO, 100 MHz): 172.49, 169.45, 167.84, 155.16, 145.05, 141.66, 140.64, 132.69,

132.21, 130.36 (x2), 120.14 (x2), 116.34, 115.74, 81.30, 62.41, 42.84, 37.65, 28.81 (x3), 23.68,

14.74.
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HRMS Calcd for [M+H]" 497.2143 Found: 497.2147.

H H H 0 H H NH
O _N N N_ O 2
~Yr T \{/ TFA \/\g
@) (0] —
CH,Cl, /\
O O/\ O O
N N3

Ethyl 5-amino-3-(3-(4-azidobenzamido)propanamido)benzoate(14): To 13 (4.19 g,
8.44 mmol) was added 1:1(v:v) mixture of methylene chloride and trifluoroacetic acid (20 ml).
The reaction was let stir for 10 minutes at room temperature. The solvent was removed in vacuo.
Iced water (20 ml) was added to the crude product and made slightly alkaline with the addition
of sodium carbonate. The mixture was diluted with 200 ml DI water and the aqueous layer was
extracted with ethyl acetate (3x 150 ml) and the combined organic layers were washed with
sodium bicarbonate (3 x 400 ml), water (3 x 400 ml), and dried over sodium sulfate. The
solvent was removed in vacuo and the crude product was recrystallized from an ethyl acetate and
hexanes mixture to afford compound 14 (2.75 g, 6.94 mmol, 82%) as a light tan amorphous

solid.

'H NMR (DMSO, 400 MHz): § 9.87 (1H, s, Hy), 8.60 (1H, t, J = 5.4 Hz, Hy), 7.89 (2H, d, J =

8.4 Hz, Ha), 7.34 (1H, s, Hay).

13C NMR (DMSO, 100 MHz) & 169.69, 165.57, 165.30, 152.68, 142.16, 140.13, 139.71,

131.00, 130.45, 129.05, 118.84, 113.58, 113.03, 79.30, 60.72, 36.27, 35.88, 28.07, 14.18.
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HRMS Calcd for [M+H]": 397.1619 Found: 397.1612.

F O
F F -
Et;N
H,0 F F
F F (85%) N3
N3

3-(4-azido-2,3,5,6-tetrafluorobenzamido)propanoic acid(18): To a solution of -
alanine(0.644 g, 7.23 mmol) in DI water (5 ml) at 0 °C was added TEA (1.1 ml, 7.83 mmol))
was added 17 (2.00 g, 6.02 mmol). The reaction was let stir for 1 hr at 0 °C and then let warm
up to room temperature and stirred 16 hours at rt. The reaction was acidified to pH 3 with dilute
HClag). The crude precipitate was filtered and recrystallized with a mixture of chloroform and

hexane to yield a white, amorphous solid (1.60 g, 5.23 mmol, 87%).

'H NMR (500 MHz, cdcl3) § 6.58 (s, 1H), 3.74 (dd, J = 11.5, 5.7 Hz, 2H), 2.75 (dd, J = 10.8, 5.1

Hz, 2H).

3C NMR (100 MHz, CDCls) & 170.54, 166.33, 158.05, 152.87, 139.60, 139.29, 131.64, 115.25,

115.03, 114.13, 80.76, 61.29.

HRMS Calcd for [M+Na]": 329.0268 Found: 329.0272.
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H
o NWOH H H
12,HATU O N\/\WN NHBoc

E E O IPr,NE
I F (0]
DMF
F F ©8%) ¢ - CO,E
N3
N3

Ethyl 3-(t-butoxycarbonyl)amino-5-(3-(4-azido-2.3.5.6-tetrafluorobenzamido)
propanamido)benzoate(19): To solution of 18 (1.58 g, 5.16 mmol) in, Ethyl 5-amino-3-(t-
butoxycarbonyl)aminobenzoate (1.80 g, 5.67 mmol) and HATU (2.14 g, 5.67 mmol) in DMF (10
ml) under an inert atmosphere was added DIPEA (1.8 ml, 10.4 mmol). The reaction was let stir
at room temperature for 60 hours. The reaction was quenched with DI water and extracted 3x75
ml Ethyl Acetate and the combined organic layer was washed 3x250 ml sat. NaHCOj3 and 3x250
ml DI water. The solvent was dried over Na,COj3 and then removed in vacuo. The crude

product was recrystallized from a mixture of methylene chloride and hexane.

'H NMR (400 MHz, CDs0D) & 7.47 (t, J = 1.6 Hz, 1H), 7.26 (t, J = 2.0 Hz, 1H), 7.14 — 6.96 (m,
1H), 5.52 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.71 (t, J = 6.6 Hz, 2H), 2.71 (t, J = 6.7 Hz, 2H), 1.36

(t, J = 7.1 Hz, 3H).

HRMS Calcd for [M+Na]": 519.1962 Found: 519.1968.

Ethyl 5- amino-3-(3-(4-azido-2.3.5.6-tetrafluorobenzamido)propanamido)
benzoate(20):

To 13 (4.19 g, 8.44 mmol) was added 1:1(v:v) mixture of methylene chloride and trifluoroacetic
acid (20 ml). The reaction was let stir for 10 minutes at room temperature. The solvent was

removed in vacuo. Iced water (20 ml) was added to the crude product and made slightly
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alkaline with the addition of sodium carbonate. The mixture was diluted with 200 ml DI water
and the aqueous layer was extracted with ethyl acetate (3x 150 ml) and the combined organic
layers were washed with sodium bicarbonate (3 x 400 ml), water (3 x 400 ml), and dried over
sodium sulfate. The solvent was removed in vacuo and the crude product was recrystallized
from an chloroform and hexanes mixture to afford compound 14 (2.75 g, 6.94 mmol, 82%) as a

light tan amorphous solid.

'H NMR (400 MHz, DMSO) & 10.84 (s, 1H), 7.34 (s, 1H), 7.23 (s, 1H), 6.99 (s, 1H), 5.57 (s,

2H), 4.26 (g, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H).

HRMS Calcd for[M+H]": 469.1241Found 469.1247.

General procedure for HATU mediated carboxymethyl glycoside and probe
coupling: To aminoprobe (14 or 20) (1 eq.), carbohydrate (8 or 9) (1.2 eq), and HATU (1.2 eq)
in a dry round bottom under an inert atmosphere was added DMF (5 ml) and DIPEA (2 eq). The
reaction was stirred at room temperature for 60 hours or at 40 °C for 40 hours. The reaction was
quenched with addition of 20 50 ml DI water and extracted 3x50 ml Ethyl Acetate. The
combined organic layer was washed 3x200 ml DI Water and 2x200 ml Brine. The Organic layer
was dried over Na,SO,4 and the solvent was removed in vacuo. The crude product was purified

by column chromatography, (MeOH/Me,CO/CH,ClI; 1:20:79).
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Ethyl 3-((4-azidobenzamido)propanamido)-5-(1-O-(2,3,4,6-tetra-O-acetyl-a-D-
mannosyl)acetamido)benzoate(15): Compound 14 (1.00 g, 2.52 mmol) and 8 (1.23 g, 3.03
mmol) were coupled using the general coupling conditions described above to afford compound

15 (1.57 g, 1.97 mmol, 78%) as a pale yellow syrup.

'H NMR (400 MHz, CDCl3) § 8.26 (s, 1H), 8.03 — 7.94 (m, 3H), 7.90 (s, 1H), 7.81 (d, J = 8.8

Hz, 2H), 7.18 (t, J = 6.3 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 5.46 (ddd, J = 13.3, 6.6, 2.6 Hz, 2H),
5.33 (t, J = 9.9 Hz, 1H), 4.98 (d, J = 1.8 Hz, 1H), 4.44 — 4.26 (m, 4H), 4.21 — 4.12 (m, 2H), 4.08
—4.00 (m, 1H), 3.92 — 3.80 (M, 2H), 2.76 (t, J = 5.7 Hz, 2H), 2.19 (s, 3H), 2.11 (s, 3H), 2.07 (s,

3H), 2.05 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H).
13C NMR (100 MHz, CD30D) & 169.74, 167.94, 167.01, 165.33, 142.20, 139.58, 138.81,
131.43, 130.99, 129.07, 118.88, 115.45, 115.24, 114.36, 99.89, 74.49, 77.07, 69.82, 66.93, 65.29,

61.17, 36.32, 35.92.

HRMS Calcd for [M+H]": 785.2624 Found: 785.2632
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Ethyl 3-((4-azidobenzamido)propanamido)-5-(1-O-(2,3,4,6-tetra-O-acetyl-B-D-
galactosyl)acetamido)benzoate(16): Compound 14 (530 mg, 1.3 mmol) and 9 (636 mg,
1.6 mmol) were coupled with the general procedure above. After column chromatography,16

(854 mg, 1.09 mmol, 83%) was obtained as a pale yellow syrup.

'H NMR (400 MHz, CDCI3) § 8.53 (s, 1H), 8.26 (s, 1H), 7.97 (s, 1H), 7.91 (s, 1H), 7.80 (d, J =
8.7 Hz, 2H), 7.57 (s, 1H), 7.07 (dd, J = 15.6, 6.9 Hz, 3H), 5.44 (d, J = 2.8 Hz, 1H), 5.32 (dd, J =
10.5, 7.8 Hz, 1H), 5.09 (dd, J = 10.6, 3.4 Hz, 1H), 4.59 (d, J = 7.9 Hz, 1H), 4.44 (d, J = 15.2 Hz,
1H), 4.38 (g, J = 7.1 Hz, 2H), 4.17 (t, J = 6.9 Hz, 2H), 3.99 (t, J = 6.2 Hz, 1H), 3.89 — 3.76 (m,
2H), 2.74 (t, ) = 5.5 Hz, 2H), 2.21 (s, 3H), 2.13 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.39 (t, J= 7.1

Hz, 4H).

3C NMR (100 MHz, CDCl3) & 207.10, 206.86, 206.52,172,71, 172.36, 171.52, 155.66, 155.55,
151.34, 151.24, 137.81, 137.61, 129.12, 128.23, 126.54, 126.46, 119.22, 119.17, 114.54, 102.74,
101.08, 100.99, 100.95, 77.55, 77.23, 76.91, 71.67, 69.01, 68.29, 66.54, 55.70, 38.11, 37.85,

29.80, 29.74, 28.30, 28.24, 27.96.

HRMS Calcd for [M+H]": 785.2624 Found: 785.2632

www.manaraa.com



37

OAc
OAc N3
H H ACON2 F F
c o)
© N\/\mN N2 12 eq. HATU, o
E F 0 1.2 €q. 8, 2 eq. iPrNEt NH F F
Et o N~ ~O
- - Cco, DMF, 40 °C, 40h /@\ J:\H
N3 EtO,C NS0

Ethyl 3-((4-azido-2,3,5,6-tetrafluorobenzamido)propanamido)-5-(1-O-(2,3,4,6-tetra-
O-acetyl-a-D-mannosyl)acetamido)benzoate(21): Compound 20 (355 mg, 0.76 mmol)
and 8 (370 mg, 0.91 mmol) were coupled using the general procedure above to provide 21 (443

mg, 0.52 mmol, 68%).

'H NMR (400 MHz, CDCls) & 8.40 (s, 1H), 8.18 (s, 2H), 8.05 (s,1H), 7.94 (s, 1H), 6.51 (s, 1H),
5.42-5.40 (M, 2H) , 5.34- 5.32 (m, 2H), 4.97 (s, 1H), 4.37-4.29 (m, 4H), 4.25-4.03 (m, 3H), 3.81

(s, 4H), 2.19 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.39 (t, 3H, J = 6.8 Hz).
13C NMR (150 MHz, CDCls) § 171.05, 170.90, 170.53, 170.38, 169.86, 167.36, 166.92, 166.03,
143.57, 138.82, 137.57, 131.65, 130.82, 129.14, 119.11, 117.78, 117.41, 116.55, 98.29, 69.53,

69.36, 69.22, 67.33, 66.00, 62.45, 61.57, 36.90, 36.51, 21.06, 20.96, 20.94, 20.89, 14.44.

HRMS Calcd for [M+Na]": 879.2067 Found: 879.2070

F F
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Ethyl 3-((4-azido-2,3,5,6-tetrafluorobenzamido)propanamido)-5-(1-O-(2,3,4,6-tetra-
O-acetyl-B-D-galactosyl)acetamido)benzoate(22): Compound 20 (575 mg, 1.23 mmol)
and 9 (599 mg, 1.47 mmol) were coupled using the general procedure above to provide 22 (771

mg, 0.90 mmol, 73%).

'H NMR (400 MHz, cdcl3) & 8.55 (s, 1H), 8.28 (s, 1H), 7.97 (s, 1H), 7.85 (s, 1H), 7.67 (s, 1H),
7.09 (s, 1H), 5.44 (d, J = 3.0 Hz, 1H), 5.32 (dd, J = 10.5, 7.9 Hz, 1H), 5.09 (dd, J = 10.6, 3.3 Hz,
1H), 4.59 (d, J = 7.8 Hz, 1H), 4.45 — 4.34 (m, 3H), 4.25 (d, J = 15.3 Hz, 1H), 4.20 — 4.11 (m,
2H), 3.98 (t, J = 6.5 Hz, 1H), 3.80 (d, J = 5.7 Hz, 2H), 2.74 (s, 2H), 2.21 (s, 3H), 2.13 (s, 3H),

2.03 (s, 4H), 1.95 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H).

3C NMR (150 MHz, CDCls) & 170.96, 170.70, 170.65, 170.44, 170.27, 167.17, 167.15, 166.10,
143.60, 139.33, 138.06, 132.08, 130.92, 129.14, 119.19, 117.08, 116.49, 115.48, 101.71, 71.39,

70.49, 69.46, 67.07, 61.63, 61.53, 38.87, 36.83, 36.26, 31.19, 21.22, 20.89, 20.82, 14.52.

HRMS Calcd for [M+Na]": 879.2067 Found: 879.2070.

General procedure for the hydrolysis of ester protecting groups

To protected probe (16, 17, 21, or 22) was added equal parts methanol and sat. KoCOgzq) t0
make a final concentration of 0.1M probe. The reaction was let stir at room temperature for 12
hours. Two ml methanol was added to the reaction, and the potassium acetate was removed by
filtration. The filtrate was acidified with DOWEX 50WX8 acidic resin to pH 3. The resin was

filtered and rinsed with generous portions of methanol. The solvent was removed in vacuo to
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afford crude products (3, 4, 5 or 6). Probes 5 and 6 were used without further purification.
Products 3 and 4 were triturated with 0.5 ml DI water and obtained as a white solid after

filtration.

OAc OH

OAc Ns
AcO 0 HO Og N3
AcO O HO (0]
K,COs
oM

MeOH, H,0
N™ ~O
LA 0,0
EtO,C N~ 0 HO,C N~ 0

3-((4-azidobenzamido)propanamido)-5-((10-a-D-mannosyl)acetamido)benzoic
acid(3): Compound 15 (615 mg, 0.784 mmol) was deprotected according to the general
procedure. The crude product was triturated with water to yield 3 as a white amorphous solid

(425 mg, .723 mmol, 92%).

'H NMR (DMSO, 400 MHz): & 12.94 (1H, s, H-COzH), 10.19 (1H, s, H-NHanmige), 9.97 (1H, s,
H-NHanige), 8.62 (1H, t, J = 5.4 Hz, H-NHamige), 8.21 (1H, s, H-Ar), 7.98 (1H, s, H-Ar), 7.90 (1H,
s, H-Ar), 7.89 (2H, d, J = 8.4 Hz, H-Ar), 7.19 (2H, d, J = 8.8 Hz, H-Ar), 4.82 (2H, d, J = 4.4 Hz,
H-OHg), 4.75 (1H, s, H-H,), 4.75 (1H, s, H-OHy), 4.59 (1H, d, J = 5.2 Hz, H-OH,), 4.49 (1H, t, J
= 6 Hz, H-OH), 4.14 (2H, M, Hagetamido), 3.81 (LH, m, H-CHg), 3.68-3.63 (1H, m, H-CHy), 3.60-
3.50 (1H, m, H-CH), 3.60-3.50 (2H, M, H-CHa(s.propanamie)), 3.55-3.36 (3H, m, H-CH¢. ), 2.63

(2H, t,J =6.8 Hz, H'CHZ(Z-Propanamido))-

13C NMR (DMSO, 100 MHz): § 169.8, 168.0, 167.0, 165.3, 142.2, 139.6, 138.8, 131.4, 131.0,

129.1 (x2) 118.9 (x2), 115.5, 115.2, 114.4, 99.9, 74.5, 70.8, 69.8, 66.9, 65.3, 61.2, 36.3, 35.9.
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HRMS Calcd for [M+H]": 589.1889 Found 589.1890, Calcd for [M+Na]": 611.1708 Found

611.1708.
N3 N3
OAGOAC o KGO OH OH 0
sat. KobUs(aqg)

o) o)
AcoéWo\)LNH MeOH HO%OJNH

OAc > OH

H
~© N0 © N0
o) o)

3-((4-azidobenzamido)propanamido)-5-((10-B-D-galactosyl)acetamido)benzoic
acid(4): Compound 15 (668 mg, 0.85 mmol) was deprotected according to the general
proceudre. The crude product was triturated with water to yield 4 as a white amorphous solid

(379 mg, 0.64 mmol, 76%).

'H NMR (DMSO, 400 MHz): § 12.94 (1H, s, H-CO,H), 10.19 (1H, s, H-NHamig), 9.97 (1H, s,
H-NHanige), 8.62 (1H, t, J = 5.4 Hz, H-NHamige), 8.21 (1H, s, H-Ar), 7.98 (1H, s, H-Ar), 7.90 (1H,
s, H-Ar), 7.89 (2H, d, J = 8.4 Hz, H-Ar), 7.19 (2H, d, J = 8.8 Hz, H-Ar), 4.82 (2H, d, J = 4.4 Hz,
H-OHg), 4.75 (1H, s, H-H,), 4.75 (1H, s, H-OHy), 4.59 (1H, d, J = 5.2 Hz, H-OH,), 4.49 (1H, t, J
= 6 Hz, H-OH), 4.14 (2H, M, Hagetamido), 3.81 (LH, m, H-CHg), 3.68-3.63 (1H, m, H-CHy), 3.60-
3.50 (1H, m, H-CH_), 3.60-3.50 (2H, M, H-CHa(s.propanamie)), 3.55-3.36 (3H, m, H-CH. ), 2.63

(2H, t,J=6.8 Hz, H'CHZ(Z-Propanamido))-

13C NMR (DMSO, 400 MHz): § 169.8, 168.0, 167.0, 165.3, 142.2, 139.6, 138.8, 131.4, 131.0,

129.1 (x2) 118.9 (x2), 115.5, 115.2, 114.4, 99.9, 74.5, 70.8, 69.8, 66.9, 65.3, 61.2, 36.3, 35.9.

HRMS Calcd for [M+H]": 589.1816 Found: 589.1879.
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3-((4-azido-2,3,5,6-tetrafluorobenzamido)propanamido)-5-(1-O-(a-D-
mannosyl)acetamido)benzoic acid(23): Compound 21 (599 mg, 0.700 mmol) was deprotected
according to the general procedure which gave 23 as a a light yellow amorphous solid (396 mg,
599 pmol, 86%). *H NMR (400 MHz, CD30D) 5 8.22 (d, J = 20.2 Hz, 1H), 7.96 (dd, J = 44.2,
18.4 Hz, 2H), 4.27 (dd, J = 33.3, 15.2 Hz, 2H), 4.03 (s, 1H), 3.86 (dd, J = 24.8, 13.5 Hz, 3H),
3.65 (ddd, J = 65.7, 35.0, 26.2 Hz, 5H), 2.74 (t, = 6.5 Hz, 2H). *C NMR (125 MHz, CDCl5) &
170.89, 170.50, 169.96, 166.27, 138.69, 137.66, 132.05, 117.67, 114.92, 98.23, 69.83, 69.44,

67.45, 65.98, 62.61, 61.71, 53.72, 37.05, 31.23, 30.01, 21.16, 21.02, 20.94, 14.55.

N3 N3

OAcOAc F F OH OH F F
sat. KyCO3(5q)

O o\)LNH . MeOH O OQLNH F F
p o Y@ o

3-((4-azido-2,3,5,6-tetrafluorobenzamido)propanamido)-5-(1-O-(B-D-

galactosyl)acetamido)benzoic acid(24): Compound 22 (707 mg, 0.83 mmol ) was
deprotected according to the general procedure to give 24 (399 mg, 0.60 mmol, 73%) as a pale

yellow syrup that turned to a pale yellow foam on under vacuum.
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Bead Preperation(6): To a suspension of Carboxy Polystyrene HL (100-200 mesh)
1%Divinyl Benzene (250 mg) in dichloromethane (25 mL) was added Ethylene Diamine (25 mg,
0.42 mmol), N,N-Dimethyl-4-Amino-Pyridine (15 mg, 0.12 mmol) and N,N’-
Diisopropylcarbodiimide (50.6 mg, 0.40 mmol). The reaction was let stir over night. The bead
was filtered and washed with ethanol (3x100 mL). The resin was immediately subjected to the
same conditions for a second cycle. The Kaiser test was positive for free amine on the surface of

the bead.

General conditions for functionalizing resin surface: The resin was allowed to swell in
DMF for 6 hours prior to starting the cycle. To the resin (~10 mg, 1.00 mmol/g loading
capactiy) in DMF (1 ml) was added 3, 4, 23, or 24 (5 mol equivalents), HATU (5 eq) and
iIProNEt (10 eq). The resin was stirred for 24 h at rt. The resin was filtered off and subjected to
these conditions to ensure complete coupling. The phenol sulfuric acid assay was used to

measure the loading of the resins.

Phenol sulfuric acid assay: Calibration curves were prepared as described (Dubois 1956)
for D-mannose and D-galactose. For resin containing samples, the procedure was slightly
modified. A one mg/ml resin suspension was prepared by ultrasonicating 1 mg of resin with 1
ml of DI water. 100 pul of this suspension was transferred to a clean test tube and diluted with
300 pl of DI water. 100 pl of an 80% phenol (v/v) solution was added followed by slow addition
of 1 ml conc. H,SO4. The test tube was vortexed (being careful, this tube gets really hot!) and let
cool back to rt over 20 minutes. One ml of this solution was carefully syphoned off to prevent

the udpate of flocculated resin, and it's absorbance measured at the reported wavelengths.
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Cross Linking Experiments: Test tubes were charged with 3 ml of 1 mg/ml BSA solution
and let incubate at 37 °C for one hour. The solutions were poured out and 1 mg of resin was
added to individual test tube, one TAPP per test tube. To all test tubes was added 0.5 ml of 1
ng/ml Concanavalin A. The solutions were let incubate at 37 °C for 12 hours, in the dark, with
gentle shaking. The test tubes were transferred to the photoreactor, a rayonet RPR-100 from
Southern New Englang Ultraviolet, and irradiated with a 350 nm broadband light source for two

hours. The resins were filtered and collected into 1.5 ml microfuge tubes for rinsing.

Rinsing Protocol: For all rinsing solutions: 1 ml of solution was added and the tubes were
vortexed for 20 seconds. The resulting suspension was centrifuged at 12,000 rpm for 10
minutes. The supernatant was carefully removed. The rinsing solutions are 1 x DI water, 3 X
10% aqueous DMSO, 3 x 25% aqueous DMSO, 3 x 75% aqueous DMSO, and 3 x DI water.
The final rinsing solutions are to ensure a safe concentration of DMSO for the enzymatic

liberation and cleavage of the bound proteins.

Sample Preparation: After cross-linking and rinsing, the resins were centrifuged at 12,000
rpm for 10 minutes, and the supernatant was removed. The resins were rinsed twice with 20 mM
NH;HCO3 pH 7.4, buffer and resuspended by ultrasonication to give a final 1 mg/ml suspension
in NH,HCO3. Aliquots corresponding to 500 nm, 125 nm, 25 nm, and 12.5 nm of bound probe,
were transferred to new microfuge tubes. The tubes were centrifuged again and the supernatent

removed in preparation for tryptic digest.
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Trypsin Digestion: To each sample was added 5 pl 20 MM NH4HCO3 and 5 pl 10x trypsin
(0.1 mg/ml trypsin in 50 mM aqueous acetic acid). The tubes were pulsed in a centrifuge to pull
the contents to the tip of the microfuge tube and they were incubated for 2 hours at 37 °C with
gentle shaking. The tubes were centrifuged and the digest supernatant was removed to clean,
labeled microfuge tubes. To the tubes with the resins was added 20 pl 20 mM NH4HCO3 buffer
and the tubes were vortexed for 20 seconds and centrifuged at 12,000 rpm for 1 minute. The
supernatant was combined with each samples respective digest solution. This process was
repeated one more time for microfuges tubes containing resin. For each sample, both 2 hour
digests and rinses were combined for 60 pl of peptide solution. These solutions were allowed to

incubate for 8 more hours at 37 °C before being subjected to mass spectrometric analysis.

Mass spectrometry and analysis: The peptide solution was analyzed by nano-LC-ESI lon
Trap with the intent of using Mascot (Perkins 1999) to search the NCBI database, limited to the
peptide source organism, in the case of ConA, that is C. ensiformis (Jack Bean). Analysis was
performed by the Laboratory for Biological Mass Spectrometry, Department of Chemistry,

Indiana University, Simon Hall 120B, 212 S. Hawthorne Drive, Bloomington, IN, 47405.
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CHAPTER Il
INVESTIGATION OF SYNTHESIS AND AUTOMATED SYNTHESIS OF HIGHLY

BRANCHED OLIGOSACCHARIDES

Introduction

One major bottleneck to the study of carbohydrates, namely glycans, are the problematic
routes to access homogenous samples for study. There are three routes in which these
biologically relevant compounds can be obtained. Isolation from natural products is a widely
shared endeavor of groups who are studying glycans (Yu 2012) and efforts have been made to
simplify such tasks (Trader 2011). Material throughput is a large limitation to this method due to
the expensive and time consuming separations of complex mixtures. Genetic engineering of
metabolic pathways have been employed produce glycan substrates and intermediates (Mizanur
2009). This method also involves isolation from a heterogenic mixture, but in these cases, the
target compounds have been amplified and obtaining homogeneous samples is possible. The
final route to accessing these compounds is through chemical synthetic methods.

Synthetic strategies are routinely carried out to produce biologically active glycan and
glycoconjugates (Lakshminarayanan 2012, Boltje 2012). Despite efforts, access to
carbohydrates is still highly limited. Many of these reasons can be attributed to one underlying
feature of carbohydrates, their structural diversity (Chang 2011). In brief, combining the number
of regio- and stereoisomers for a particular pair of monosaccharides, with the number of possible

monosaccharides, and with the number of linkages in oligosaccharides, the number of possible
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compounds grows quickly, on the order of 10° for a trisaccharide library arbitrarily limited to 8
monosaccharide building blocks just to give perspective.

Another challenge facing carbohydrate chemistry is the lack of understanding and
predictability in the outcome of the glycosylation reaction. There has been several efforts to
probe these reactions (Crich 2004) but in spite of these efforts, no precise mechanism has been
elucidated (Crich 2010). Much effort can be invested in the preparation of a monosaccharide
donor for glycosylation, and failure at this step is very costly.

The preparation of these monosaccharide donors has also not been trivialized. Many
donors can take six to seven synthetic steps to prepare, and in some cases upwards of 15 steps
have been reported. These steps involve differentiating the reactivity of hydroxyl groups in these
polyols, which can lead to difficult to separate regioisomers and sensitive reactions.
Development of synthetic routes to building blocks with similar protecting group features would
allow for the use of general preparation techniques for donors as well as reproducible and
predictable orthogonal deprotection of hydroxyl groups for chain elongation.

Automated chemical methods for carbohydrates would certainly benefit from having
predictable deprotection conditions by allowing for the facile production of small arrays of
glycans for study. Routine scripts and standard reagent stocks could be used without concern for
specific substrate. This would be limited to cases where the glycosylation is easily controlled,
such as in cases where the 2 position protecting group will anchimerically participate during
glycosylation.

The nematode, Caenorhabditis elegans, has been shown to produce a series of
oligosaccharides, 1-6 (Figure 3.1) (Guerardel 2001). The structurally interesting feature of these

saccharides is the heavily branched pattern on the galactose amine residue (4) as well as the
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galactose residue (6). The similarity in these structures would suggest the enzymes that are
responsible for the production of these saccharides is most likey highly erroneous due the steric
hindrance, and is likely the cause of the identification of such a structurally related set of
oligosaccharides. This highly branched pattern also poses a challenge to current synthetic
methods and warrants investigation into the synthetic capabilities to produce such branched

oligosaccharides.

HO
HAQ OH nES oH HOX OH  Hb'JoH
HoigO Hogo/ Ho{g Ho/go/
OH 0 OH 0 o}
HO HO HOOG HO HO HOOG HO HO
0 o} HO 0 0 o HO 0 0
HO o} OH HO 0 0 OH HO 0 o} OH
OH NHAc OH OH NHAc OH OH NHAc
1 2 3
HO HOA OH  HEQOH
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HIOS on o HO) OH  {ER o
OH o LBH HOlo HOTLO
HO\ © HO [0 0 H
HO) H HO HO O O ol
o] o © —oH HO O o o] OH
HO o] o] HO o %o & oH
o OH o o Hooc._© o "
HO o oH HO o oH HO/S\?eO/H o
OH NHAc OH NHAc HO
4 5 6

Figure 3.1 Structurally similar oligosaccharides isolated from the nematode C. elegans.

A specific C. elegans mutant, srf-3 (Cipollo 2004), was found to produce these
carbohydrates in considerably reduced quantities. This mutant variant of the nematode was also
was found to display immunity to pathogen infection by Y. pestis, Y. pseudotuberculosis, and M.
nematophilum. It’s logical to implicate these saccharides as being key components in pathogen

recognition of host cells. One significant structural feature of this set of carbohydrates is the
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core disaccharide unit Gal-(1—3)-GalNAc. This core saccharide is the well known TF antigen
(Imamura 2005, Ju 2013) and is a conserved feature of mucin type | proteins (Therkildsen
1995). Thus, it’s valid to assert a hypothesis that implicates the binding proteins that recognize
these carbohydrates in C. elegans as well as recognize the TF antigen in mammals.

To probe the ability of creating a donor library for facile production of a series of
oligosaccharides, concurrently investigating current glycosylation methods to achieve multiple,
sterically hindered glycosyations, and providing synthetic access to an interestingly relevant set
of oligosaccharides, pursuit of these targets seemed worthwhile. Here in we report the synthesis
of donors to investigate current methods to synthesize heavily branched and sterically hindered
glycosylation reactions with standardized deprotection conditions and preliminary results of
automation using fluorous tag assisted automated solution phase synthesis of heavily branched

oligosaccharides.

Results and Discussion

A protecting group strategy was devised keeping two ideas in mind, the first being
minimal steps required for complete deprotection, and the second to be applicable to biological
experimental platforms for studies that target the biological significance of such glycans.
Protecting groups that are linked through an ester linkage were chosen to be the protecting
groups for hydroxyl groups that are not incorporated into glycosidic bonds as the hydrolysis of
these functional groups occurring under quite mild alkaline conditions. The envisioned protected
carbohydrates (Figure 3.2) meeting those requirements exhibit acetyl, levulinoyl, and methyl

esters as hydroxyl and carboxylate esters. The reducing end of the sugar is modified with a
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fluorous alkene, cis-3-(perfluorooctyl)propyloxy-2-butenol (Ftag), that serves as both a

protecting group for the anomeric carbon at the reducing end as well as a handle for purification

that is critical for automated synthetic methods.

This paritcular handle works in combination

with fluorous silica gel and is known as fluorous solid phase extraction (FSPE).

~
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Figure 3.2 Protected saccharide targets from C. elegan.
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The six target oligosaccharides, all containing the core disaccharide Gal(B1—3)GalNAc,

can be prepared from four protected disaccharides, 13-16, (Figure 3.3) that each have a unique

protecting group pattern to allow for orthoganol deprotection conditions to selectively free

hydroxyls for glycosylation. Disaccharide 13 would be an intermediate for target trisaccharide 1,

disaccharide 14 would give rise to pentasaccharide 3, core 15 would be employed to access

target pentasaccharide and hexasaccharide 5 and 6, and 16 would be used for the preparation of
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tetrasaccharide and pentasaccharide 2 and 4. Retrosynthetic analysis of the general disaccharides
results in a need for four donor monosaccharides, two galactose amine monosaccharides for the
reducing end carbohydrate, and two galactose monosaccharides for the nonreducing end of the

disaccharide , 17-20.

OAc oP! oP! OP!
AcO AcO AcO AcO opP’ op'’
o o o o AcO P'O
AcO (@] P20 (6] o o
OAc N3 OAc Nj P20 P20
13 14 17 18
1 1
oP! oP! oP! oP’ AcOOP FﬂoOF>
P'O AcO AcO P'O %&m %
P? P20
ong&/og% P%%@LO%% © OAc -G OAc L@
OAc N3 OAc N3
OFtag OFtag
19 20
15 16

Figure 3.3 Retrosynthetic analysis of core disaccharide to access the six oligosaccharide

targets.

The branching pattern of all C. elegans saccharides requires two orthogonal protecting
groups, one to protect hydroxyls for glycosylation a glucose donor, P* (17-20), and one for
glycosylation with a galactose or glucuronic acid donor, P? (17-20). The desired ester groups
and the azide group in the protected products, 7-12, excludes protecting groups that require
strongly basic or reductive conditions for liberation of the hydroxyl group. The acidic
glycosylation conditions exclude acid sensitive groups like methoxy benzyl ethers or
trimethylsilyl ethers. However, other silyl ethers are known to have longer half lives in acidic
conditions and have many known cleavage conditions across a range of solution pH, allowing for
mild, orthogonal deprotection of silyl ethers in presence of esters. Specifically, tert-

butyldiphenylsilyl (TBDPS) ethers are well known and extensively used in oligosaccharide
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synthesis. One convenient feature of this protecting group is its selective protection for primary
hydroxyls, making it ideal for use in building blocks 17 and 19. Currently, there is no evidence
of being able to protect four position hydroxyls of carbohydrates with the TBDPS ether, and
many of the other silyl groups might be too labile under glycosylation conditions, another
protecting group will need to be employed for donors, 18 and 20. To avoid unnecessary
deprotection steps, a strategy to deprotect both four and six positions of 18 and 20 would be
ideal. Benzylidene acetals have been shown to be stable to the acidic conditions of glycosylation
and glycosidic bonds are not susceptible to solvolysis under these conditions. Preferential acetal
formation with 1,3 diols over 1,2 diols have been applied frequently to carbohydrates to protect
the four and six hydroxyl groups and would be a suitable protecting group for both donors, 18
and 20. The final protecting group needed to protect the three position hydroxyl of the four
donor compounds ought to cleave under relatively nuetral conditions to make it orthogonal to the
basic cleavage conditions of ester groups and the acidic cleavage conditions of acetals. One
protecting group that can conform to these requirements is the levulinate protecting group. This
ester will selectively cleave under very mild acidic conditions in the presence of hydrazine.
With this strategy in mind, seven donor compounds, 21-28 (figure 3.4), were envisioned
to be necessary for the preparation of all six targets (table 3.1). Trichloroacetimidate (TCA)
donors (shmidt 1980) were chosen for ease of preparation, robust reactivity, mild activation
conditions, and solubility of byproducts. TCA donors have been employed in numerous
glycosylation reactions, in various solvents, under a wide range of temperatures, for a large
variety of substrates . Soluble byproducts are desired to make this synthetic route amenable to

automated solution phase chemical synthesis of oligosaccharides . One extra galactosamine
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donor was prepared to simplify deprotection of the protected saccharide to obtain target

saccharide 2.

v
o} OA OTBDPS
0 AOT C AcO
o] o] 0
Levo% Levog&“ LevO
Ns O\H/CCls N o\[(cm3 N; OYCCI3
NH NH NH
21 22 23
Ph
\VO OTBDPS
o} AcO
o o
Levog&” Levogﬁ_‘
AcO OTC% AcO OYCCIQ,
NH NH
24 25
MeOOC AO o Aco
AcO AcO
AcO 0. _ccCl AcO "O_ _CCl, AcO
3 hif AcO OTC%
NH
NH NH
26 27 28
Figure 3.4 Glycosyl donors needed to synthesize all six oligosaccharide targets.
Table 3.1 Donors required by target
Target Donor 1 Donor 2 Donor 3 Donor 4
1 23 28 27 -
2 22 25 27 26
3 23 25 27 26
4 23 24 27 -
5 21 23 27 -
6 23 24 27 26
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Donors 26, 27, and 28 have been prepared previously (Wayne 2010). Preparation of
compound 21 (scheme 3.1) originated from the known 1,3,4,6-tetra-O-acetyl-2-deoxy-2-azido-
a/pB-D-galactoside, 29 (Mukherjee 2008). The glycosidation with p-methoxyphenol was
achieved with catalytic triflic acid to produce acetal 30 in good yield. Basic solvolysis of the
three esters with sodium in methanol, subsequent protonation with DOWEX 50WX8 cation
exchange resin, followed by selective acid catalyzed acetal formation with benzaldehyde dimthyl
acetal to transform triester 30 to the 4,6-O-benzylidene acetal 31 in 84% yield over three steps.
Acylation of the sole alcohol with levulinic acid was effected under standard carbodiimide
coupling condition to provide 32 in excellent yield, 91%. Oxidative cleavage of the p-
methoxyphenyl protecting group with ceric ammonium nitrate (CAN) gave poor yield, but
enough material to carry onto TCA formation with catalytic DBU and CCI;CN, well known

conditions, to obtain target donor 21, in 11% over 7 steps from known compound 29.

1. cat. Na, MeOH rt, 1h Ph
0.3 eq. TFOH ’ ’
OAc OAc 192 eq PMPOH OAc Ogc 2. DOWEX 50WX8 OO
%ﬁ AcO 3.2 eq. PhCH(OCHj),,
Ng “OAc CH2Clz, mt, 16h N; *OPMP cat. TSOHH,0 2
(76% 3:1 0@ 8 2 HO
o ) MeCN, rt, 8h, (84%) N3 “OPMP
29 30 31
¥ Ph
(e} 1. 3 eq. (NH,),Ce(NO3)g
o 4:1 MeCN:H,0 I%O 1.2 eq. EDC, 1.2 eq. LevOH
o) 0 °C to rt 10 min 1.2 eq. EtN, cat. DMAP
Levo LevO 2 =
N3 O\[(CC|3 2.10 eq. CC|3CN, N3 OPMP CH20|2, rt, 8h, (91%)
NH cat. DBU,
21 CH,Cly, rt, 1h, (19%) 32

Scheme 3.1 Synthetic route to donor 21.
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From compound 32 (scheme 3.2), hydrolysis of the benzylidene acetal was accomplished
with aq. trifluoroacetic acid and the free hydroxyl groups were acylated with acetic anhydride to
afford compound 33 in 68% vyield over both steps. Cleavage of the phenolic ether with CAN and
then formation of TCA donor 22 with standard conditions provided in modest yield, 17% over 9

steps from known compound 29.

1. 3 eq. (NH,),Ce(NOs)s OAc OAc
OAc OAc 4:1 MeCN:H,0 o)
1. TFA,H;0,CHyCl, 0 0 °C to rt 10 min Levogﬁ‘
32 > LevO - N3

2.Ac0, Py, 1, 8 h N3 “OPMP 2. CCI,CN, DBU, CH,Cl, OYCC':%
(68%) rt, 1h, (42%) NH
33 22

Scheme 3.2 Preparation of donor 22.

Access to donor 23 originated from compound 30 (scheme 3.3). Basic hydrolysis of the
esters, acidification, and regioselective silylation of the primary hydroxyl group furnished silyl
ether 34 in 73% vyield over all three steps. Trimethyl orthoacetate and cat. tosylic acid was
employed to form an orthoester with the cis diol of 34, which was regioselectively opened to the
axial ester. The final hydroxyl group was converted to the levulinate ester with levulinic acid
and EDC to provide compound 35 in 85% yield over all three steps. Cleavage of the p-
methoxyphenyl ether was achieved with CAN and the hemiacetal was transformed to TCA
donor, 23 in total of 29% over 9 steps from 29.

With all necessary galactosamine donors prepared, attention was turned to the two necessary
galactose donors, 24 and 25. The route to 24 initially started from known p-methoxyphenyl 4,6-

O-benzylidene-B-D-galactopyrannoside, 36 (scheme 3.4). Regioselective protection of the three
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position hydroxyl with tert-butylchlorodimethylsilyane was achieved after 24 hours in DMF to
give isomer 37 in 66% yield, which was easily separated from the 2-TBS regioisomer on silica
gel. The acylation of alcohol 37 initially proved unreactive towards standard conditions until
catalytic DMAP was added. The reaction then proceeded, slowly, over

1. cat. TsOHH,O

1. cat. Na, MeOH rt, 1h 10 eq. CH;C(OEt)s,

2. DOWEX 50WX8 oH OSBDPS Toluene, 1t 1h OAc OTBDPS
30 - .
3.12eq.TBOPSCI MO 2 80%aq HOAG 40°C,1h ~°Y° N, OPMP
3 eq. Imidazole 3 3. EDC, LevOH, Et3N,
DMF, rt, 6-8h 24 cat. DMAP, CH,Cl, 35
(73%) rt, 8h, (85%)
OAc OTBDPS 1.3 eq. (NH4)QCG(NO3)6
0 4:1 MeCN:H,0
LevO 0 °Ctort10 min
N3

O\H/CCls 2. CCI5CN, DBU, CH,Cl,
- rt, 1h, (62%)

23
Scheme 3.3 Synthetic scheme for donor 23.

8 hours, which was then directly subjected to desilylation conditions. Standard conditions which
employ TBAF as the fluoride donor was presumed to be provoking migration of the two position
acetate to the three position acetate. Buffered conditions with acetic acid didn’t prevent
migration completely, but switching fluoride source to thriethylamine trinydrogen fluoride
complex, buffered with Et;N, provided compound 38 in 68% yield over both steps. Alcohol 38
was converted to levulinate ester 39 with standard carbodiimide coupling in great yield.
Oxidative cleavage of the p-methoxyphenyl ether was completed with CAN and followed by
TCA formation at the hemiacetal to furnish donor 24 in 29% yield over 6 steps.

The final galactose building block needed for the preparation of the oligosaccharide

series began with known p-methoxyphenyl 6-O-tert-butyldiphenylsilyl-p-D-galactopyrannoside,
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40 (scheme 3.5). The cis diol was first converted to an orthoester using trimethyl orthoacetate,
the remaining hydroxyl was acylated with acetic anhydride under basic conditions, and then the
orthoester was regioselectively opened to the axial ester to give alochol 41 in 65% yield over all
three steps. The remaining three position hydroxyl group was converted to the levulinate ester
under standard coupling conditions to access compound 42 in high yield. The anomeric ether

was oxidatively cleaved with aqueous CAN and converted to TCA donor 25, in 47% yield over 6

steps.
Ph T 1.3 eq. Ac,0, 5 eq. Ets;N Ph
.3 eq. Ac,0, 5 eq. Et;
o 1.2 eq. TBSCI %O cat. DMAP, CH,Cl, %o
0) 2.5 eq. Imidazole o rt, 8h o
O TBSO%S _OPMP Hog \__OPMP
HO OPMP  DMF, rt, 24h oH 2.3 eq. EtsN(HF)3, 6 eq. EtsN OA
OH (66%) rt, 72h (68%) c
36 37 38
Ph
%o 1. 3 eq. (NH,),Ce(NO3) Ph
o) ' 4:1q,\',|eCN4:,.2|20 36 %o 1.2 eq. EDC, 1.2 eq. LevOH
o) 0 °C to rt 10 min 0 1.2 eq. Et3N, cat. DMAP
LevO (o)
AcO 2. CCI,.CN, DBU, CH,Cl,  LevO OPMP CH,Cly, rt, 8h, (80%)
O.__CCl3 : 3~ » LMLl OA
it, 1h, (82%) c
NH
24 39

Scheme 3.4 Preparation of donor 24.

1. cat. TsOHH,O

10 eq. CH3C(OEt)3, 1.2 eq. EDC, 1.2 eq. LevOH
OH OTBDPS q 3 3 OAc OTBDPS OAc OTBDPS
0 Toluene, rt, 1h 0 1.2 eq. Et3N, cat. DMAP o
HO OPMP 5 o Ac.O. 3 ELN HO OPMP CH,Cl,, 1t 8h. (89%) LevO OPMP
. €q. ACLL, 5 eq. 3N, 2Clo, I, , o
OH CH,Cl,, rt, 6h. OAc OAc
3. 80% aq. HOAc, 40 °C,
40 1h, (65%) a1 42
OAc OTBDPS
o 1.3 eq. (NH4)2C€(NO3)6
LevO 4:1 MeCN:H,O
AcO 0 °C tort 10 min
O _CCl;
hil 2. CCI,CN, DBU, CH,Cl,

NH rt, 1h, (81%)
25

Scheme 3.5 Synthesis of donor 25.
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With all the necessary intermediate donor targets prepared, efforts were directed towards
the glycosylation and deprotection conditions to finish preparing the six target oligosaccharides.
The main question in this study is if it is possible to prepare the highly branched oligosaccharide
structures that feature the 3,4, and 6 glycosylation pattern (4 and 6) with current chemical
methods. Thus, target 4 was chosen for preliminary experiments. The first glycosidation
reaction will install the fluorous tag compound at the reducing end of target 4 prior to saccharide
extension glycosylations. The initial glycosidation reaction, (Table 3.2, entry 1) was surprisingly
selective for formation of the f anomer. Literature precedent had given the hypothesis that this
building block would give good selectivity for the oo anomer (Zhitao Li, Seeberger). Further
discussion with Zhitao Li indicated that he only observed his reported selectivity with
deactivated acceptors and the selectivities were substrate (acceptor) controlled. Work published
later (Zhitao Li) indicated that with simple nucleophiles give excellent 3 selectivities with 2-
deoxy-2-azido TCA donors. The strereochemistry of the linkage of these carbohydrates in vivo
is unknown but are presumed to be a due to core structural similarities of these carbohydrates
and the mucin glycans, which are found as a O-linked glycosides.

There is evidence in literature (Park 2007) that suggests using additives during
glycosylation can influence stereoselectivity of the resulting glycosidic bond. Specifically, the
addition of 10 equivalents of thiophene could lead to the formation of a glucosides presumably
through coordination of the sulfur atom of thiophene to the oxocarbenium intermediate (Scheme
3.6) in the B conformation, which is assumed to be due to steric effects based on computational
studies. Investigation of this additive did have a large effect on the reaction outcome, shifting

the results to about a 1:1 ratio of o to B. After thiophene was shown to be only mildly able to
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controlling the selectivity of the glycosidation completely, it was hypothesized that a

participating solvent might have a more drastic effect in the outcome of the reaction.

Table 3.2 Glysoylation of donor 21 with acceptor Ftag. Selectivities were determined on by

isolated mass. All glycosylations were carried out using 3 eq. of 21, 0.3 eq. TMSOTT, 1 eq. Ftag

alcohol, and 10 eq. thiophene when used. The reaction was run at a concentration of 0.4M with

respect to donor 21. ®Concentration of donor 21 was 0.01M with all other equivalents held

constant.

Ph “eh Ph Ph

R e %
LevO ™MSOTE  |evo Levo%&/OFtag

Nsjrca  Solvent System Ny e Ny
43 44
Entry Solvent Thiophene Temperature Yield Selectivity

1 CHCl; N/A 25°C 80 All B
2 CH.CI, 10 eq. 0°C 70 1.2:1 alp
3 CH.CI, 10 eq. 25°C 73 1.1:1 o/p
4 Et,O N/A 0°C 30 2.5:1 0/
% Et,O N/A 0°C 82 3.5:1 0/

The reaction with thiophene suggested that cooridanation of the intermediate can be a

solution to the stereochemical outcome of the glycosidation and thus, solvents effects were

explored. Participating solvents are well known in organic synthesis, but solvents of particular
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Scheme 3.6 Hypothesized role of thiophene in generation of o glycosides.

interest in glycosylations are ether, acetonitrile, and toluene. All three of these solvents posses
either lone pairs or enough electron density to donate to the oxocarbenium cation intermediate
during glycosyalation. Acetonirtrile has been shown to primarly prefer to coordinate to donors
from the o face of the cation, giving rise to 3 anomer products while conversely to that, ethers,
notable diethyl ether and dioxane, have been used due to their preferential coordination to the
carbocation via the 3 face, giving rise to favored a glycosides. Diethyl ether was then
investigated as the solvent during glycosylations with the fluorous tag acceptor. In diethyl ether,
the reaction provided a 5:2 mixture in favor of the oo anomer but the yield of the reaction fell to
only 30%. While the selectivity for the a. anomer did improve, the magnitude was not adequate
when considering the cost of all the subsequent donors and poor yield, other solutions were
investigated.

Di-tert-butylsilylene protected carbohydrates have started appearing frequently in
oligosaccharide synthesis in recent literature. Similar to many reactions involving
carbohydrates, the effect of these groups is heavily dependent on the carbohydrate. These groups
have been shown to invoke a ring flip of the carbohydrate during glycosylations in some cases,
or just prevent the formation of one anomer through steric blockage of a particular face of the
carbohydrate. The use of these with 2-deoxy-2-galactose derivatives have now appeared, studies

into their mechanistic effects have not yet been pursued to my knowledge. However, in one
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case, it was shown that such a silylene based 2-deoxy-2-azido galactose based derivative gave
excellent a selectivity. Thus donor 45 was envisioned to provide good o selectivities while still

allowing for a simultaneous deprotection of both the four and six position hydroxyls (Scheme

3.7).
1. cat. Na, MeOH rt, 1h >H/ 1.2 eq. EDC, 1.2 eq. LevOH _
2. DOWEX 50WX8 Si-o 1.2 eq. E;N, cat. DMAP Si-o
30 > o) o)
3. (tBu),Si(OTf),, Py 0 CH,Cl,, rt, 8h, (82%) o)
CH2C|2, rt, 2h HO LevO
(64%) N3 *OPMP N; “*OPMP
46 47

\1/8{\0 1. 3 eq. (NH,)2Ce(NO3)s
o) 4:1 MeCN:H,0
e} 0 °Ctort10 min
LevO -
N3 O\ﬂ/

CCl;  2.CCI;CN, DBU, CH,Cl,
rt, 1h, (67%)
NH
45

Scheme 3.7 Preparation of donor 45.

Synthesis of donor 45 started from previously prepared 30 (Scheme 3.7). The acetate
protecting groups were removed by basic solvolysis with sodium in methanol, which was
acidified with DOWEX acidic resin, and the resulting triol was converted to the 4,6 silylene 46
in modest yield. Alcohol 46 was transformed to levulinate ester 47 with standard carbodiimide
coupling conditions in good yield. The p-methoxyphenyl ether of 47 was oxidatively cleaved
with CAN, and the resulting hemiacetal was transformed to the TCA donor, 45, with base and
CCIsCN in 27% yield over 8 steps from 29.

Donor 45 was explored as a glycosyl donor with the fluorous tag alcohol acceptor (Table

3.3). The reaction in methylene chloride at room temperature afforded only o anomer in
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Scheme 3.8 Proposed silyl group influence with stereoselectivity.

good yields. The selectivity for formation of the oo anomer is thought to arise out of steric
hinderance of the a face (scheme 3.8). Persumable, after formation of the carbocation, the
oxygen will donate its electrons into the vacant carbocation orbital, and the resulting
planarization puts structural strain on the 4,6 fused ring system. In turn, this causes the
secondary ring structure to pucker. It’s hypothesized (Imamura 2005) that the loan pair on the
oxygens in the silylene donating towards the carbocation will influence the tilt of the tert-butyl
groups to be over the carbocation, successfully hindering the 3 face of donor 45.

With glycosylation conditions suitable for automation elucidated, the fluorous tag
assisted solution phase automated synthesis and investigation of these glycosylations
commenced. Automation was performed on a Chemspeed Automation Synthesis Workstation
1000 robotics platform (ASW). A series of macrotasks were designed (Table 3.3) that would be
amenable to any of the protected targets (7-12). The macro tasks were created such that when
setting up new programs for a particular target, minimal changes would be necessary. The only
changes would be adjusting zones (specific vial locations), times and volumes.

Once the variable macro tasks were established, a program was designed to prepare 10
and investigate current chemical methods' to achieve a heavily branched 3,4 and 6 position

glycosylations (figure 3.5). The envisioned route started with TMSOTT catalyzed glycosidation
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Table 3.3 Program flow for ASW protocol for 10. *Only if task includes intentional waits or

time consuming tasks. Where A, D, RV, RT, TLC, FSPE, WASTE, COLLECT, DIRECT,

MeOH, 80MeOH, DS are variables that are set for each macro task prior to running.

Macro Task

Step

Sub Tasks

Operational
Time®

Evaporation

Heat/Cool
Apply vacuum
Heat/Cool

45 minutes

Glycosylation

Transfer A to RV
Transfer D to RV
Heat/Cool
Transfer TMSOTf to RV
Wait for RT
Transfer TLC aliquot
Transfer EtsN
Evaporation

Variable

Drying Cycle

NFRPO~NOOOTRRWNERIWNE

Transfer toluene to RV
Evaporation
Repeat from 1 twice

2 hours

FSPE

Set FPSE to WASTE
Transfer RV to FSPE
Transfer MeOH to RV
Transfer H,O to RV
Transfer RV to FSPE
Transfer 80MeOH to FSPE
Set FSPE to COLLECT
Transfer MeOH to FSPE
Set FSPE to DIRECT
Transfer FSPE to next RV
Evaporate
Repeat from step 8

About 2 hours

Deprotection

rwnNRRECREERRO0CovoO b~ N R
N R O

Transfer DS to RV
Heat/Cool
Wait for RT
Transfer TLC aliquot

Variable

of 45 with Ftag followed by cleavage of the levulinic ester with hydrazine hydrate. The

reaction was quenched with water and loaded directly on to FSPE for purification from the

reaction mixture. The resulting acceptor was then subjected to glycosylation with donor 25.
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Directly after the reaction, desilylation was performed with TBAF and HOAc in DMF. The
reaction was again loaded directly onto FSPE for purification of the fluorous containing material.
The glycosylation of the presumed triol intermediate was attempted using six equivalents of
donor 27. The program (Table 3.4) made use of the previously described macro tasks and

included the removal of aliquots for TLC.

\”/ A/}:CO OAc AcO
cO 3 OAc OAc
AC
AcO (o) AcO
AcO 0
*e 0 O O
0 o) Ac
AcO OL
LevO 2 O &/‘&‘
ev
FtagOH ACoOTBDPS OAc N3OFtag
0
LevO 10
OAc o\[(cm3
25 NA

R Glycosylation
(I FSPE
I Delevulination
1 Desilylation

Figure 3.5 Visual diagram for automated synthetic protocol.
After the program was run, the obtained fluorous compounds were analyzed and program
and reaction conditions produced a highly impure sample. No product was readably discernible

from the mixture, but one convenient aspect of solution phase automation synthesis is the ability
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Table 3.4 Program for ASW to obtain target 10. Macro tasks and simple tasks included.

Step Macro Task Variables
1 Drying Cycle All Reactor Vials
2 Glycosylation Reactor Vial 1
0.45 ml Ftag
0.45 ml 45
25°C
0.1 ml TMSOTf
45 minutes
3 Deprotection 0.4 ml Hydrazine Solution in DMF
25°C
180 minutes
4 Liquid Transfer 0.1 ml H,O to Reactor Vial 1
5 FSPE Source: Reactor Vial 1

0.7 ml Crude Volume
FSPE station 1
Destination: Reactor Vial 2

6 Drying Cycle

7 Glyosylation Reactor Vial 2
No Acceptor Transfer
0.9 ml 25
0°C
0.1 ml TMSOTf
45 minutes

8 Deprotection 0.5 ml TBAF/HOACc in DMF
25 °C
60 minutes

9 FSPE Source: Reactor Vial 2
0.7 ml Crude Volume
FSPE station 2
Destination: Reactor Vial 3

10 Drying Cycle

11 Glycosylation Reactor Vial 3
No Acceptor Transfer
1.8 ml 27
0°C
0.1 ml TMSOTf
45 minutes

13 Liquid Transfer 0.5 ml DMF to Reactor Vial 3

14 FSPE Source: Reactor Vial 3
0.7 ml Crude Volume
FSPE station 3
Destination: Reactor Vial 4
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to take TLC aliquots. TLC analysis of the aliquots quickly identified the problem step as being
related to the desilylation conditions. To verify that this was indeed the problem step, bench top
methods were employed. This can be done without needing to worry about later optimization on
the platform as optimization on the bench top translates directly to solution phase automated
synthesis.

1. 1 eq. HO-Ftag, \*/ \}/
cat. TMSOTf

- 0
CHyCly, rt, 1h \~/S'\ o 25 cat. TMSOTf ~ 1BDPSO \i/ 0

3eq.45 Q AcO ?
2.5 eq. NH2NH2H20, HO & CH2C|2, 0°C,1h LevO © (@) 2
Py/HOAc (4:‘1)OH N, (96%) OAc N

5eq. &~ OFtag OFtag
(53%)
48 49

Scheme 3.9

Starting with donor 45, glycosidation with the fluorous tag was performed in methylene
chloride at room temperature (Scheme 3.9). The crude was directly subjected to hydrazine under
mild acidic conditions to cleave the levulinate ester to provide acceptor 48 in 53% yield over
both steps. Donor 25 was subjected to glycosylations conditions with acceptor 49 to produce
disaccharide 50 in excellent yield, 96%. Desilylation with TBAF and acetic acid conditions (as
used on the ASW platform) and TBAF resulted in several decomposed products as indicated by
TLC analysis of the reaction mixture (Scheme 3.10). Triethylamine trihydrogen fluoride
complex was one condition that seemed to provide only one product as seen by TLC. This
condition was persued and 49 was subjected to triehtlymine trihydrogen fluoride buffered with
triethylamine, which was completely consumed after 3 days. The reaction produced what is
presumed to be an inseparable mixture of 50 and 51 based on *H NMR and *C NMR, in good

yield. The mixture was subjected to glycosylations conditions (Scheme 3.11) with donor 27 to

www.manaraa.com



66
OH

AcO OH.OH
(0] (0]
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TBAF, THF OAc N3
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AcO ) 0 0|:|) e ELN(HE), -
g : 49 -
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OFtag TBAF ’ AcO
HOAc, DMF HO OH OH
50 0 0
LevO o
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OFtag
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Scheme 3.10 Desilylation conditions investigated for 49.

investigate the possibility of forming multiple glycosidic bonds in one pot of a 4,6 diol after the
three position has already been incorporated into a glycosidic bond. Six equivalents of donor 27
were initially used but after all the donor had decomposed, several compounds were present by
TLC analysis. Another six equivalents of 27 were added which resulted in several spots on TLC
to vanish. Separation of the material is possible, but currently, only HRMS has been successful
in characterizing the compound. The hypothesized products are compounds 10 and 52, which

were obtained in 44% yield, both of which feature the 3,4,6 branching pattern.

AcO AcO
ACO ¢ AcQ ) 0Ac OAC
6 eq. 27 AcO OAc
cat. TMSOTf AcO\ O AcO
CH,Cl,, 0 °C, 1h
50 + 51 > 10 + 0 OAc
(44%)
LevO
OFtag
52

Scheme 3.11 Triple glycosylation on 6' and 4,6 diols of mixture of 51 and 52.
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Conclusion

Many methods are available for obtaining glycans but chemical synythetic methods are
highly attractive for obtaining chemically well defined structures. The attactiveness will further
grow as combinatorial chemical methods continue to improve. Reported here in this project is
the rational design of monosaccharide building blocks that could be employed for the rapid
production of an array of related oligosaccharides. One interesting challenge of this
carbohydrates investigated was the possibility to perform multiple glycoslyations in one step as
well as investigate the capabilities of current methods to affect a 3,4, and 6 glycosylation pattern
on a singular monosaccharide unit. Despite poor desilylating conditions, it has been shown here
that such reactions are possible with current methods.

To expand on this, it has been shown here how solution phase automated methods can be
used to probe glycosylation and deprotection conditions by allowing for stepwise monitoring of
the performed reactions. This is unique only to solution phase automated methods, other
methods such as those making use of solid supports do not have this utility. Another issue with
solid supports is the optimization conditions necessary for each step do not simply translate due
the solid support. One major concern is that concentration is hard to control in biphasic reactions
which can have huge impacts on glycosylation outcomes. Deprotection reagents and solvents
can be adsorbed onto the resin which can have detrimental effects on subsequent reactions. One
other large concern | would have is that solid phase typically calls for 10 equivalents of donor for
each glycosylation. If trying to do such a glycosylation as shown here, the number of
equivalents needed could be in incredibly wasteful excess, even if possible. Solution phase

methods combined with a good rational design of building blocks allows for minimal reaction
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optimization and programming in attempts to construct arrays of oligosaccharides that would be

useful in biological studies.
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Experimental Section
General: All commercially available compounds were purchased from TCI, Sigma Aldrich, or
Fisher Scientific; they were reagent grade and used without further purification. For sensitive
reactions, solvents were dried prior to use by distillation from a suitable drying agent. Column
chromatography was performed with ZEOprep ECO silica gel 60 with 40-63 um particle size
(American International Chemical). Reactions were monitored using thin layer chromatography
coated with a 0.25 mm layer of silica gel 60 Fzs4 (Sorbent Technologies). Compounds were
visualized with UV light and/or 5% v:v sulfuric acid in ethanol. *H NMR and *C NMR were
performed with either a VVarian 1400 MHz or Varian i500 spectrometer, or otherwise noted. All
'H NMR peak assignments were made using solvent residual peaks as an internal standard
(DMSO & 2.50 ppm, CDCl; & 7.26 ppm, and CDsOD & 3.31) as were “*C NMR peak assignments
(DMSO & 39.51 ppm, CDCl5 & 77.31 ppm, and CD30D & 49.00) and supported using *H-H
COSY experiments as needed. High resolution mass spectra were obtained with a Thermo
Electron Corporation MAT 95XP-Trap for compound characterization. Automation was

performed on a modified Chemspeed ASW-1000 robotics platform.

0.3 eq. TfOH
OAc OAc 1.2 eq. PMPOH OAc OAc
0] - (0]
AcO AcO
CH2C|2, rt, 16h

N; “OAc N; “OPMP
(76% 3:1 D)

Synthesis of p-methoxyphenyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido-a/B-D-
galactoside (30). A solution of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-azido-a/p-D-galactoside
(7.26 g, 19.4 mmol) and 4-methoxyphenol (2.9 g, 23 mmol) in methylene chloride (50 ml) under
argon was cooled to 0 °C in an ice bath while stirring. Trifluoromethanesulfonic acid (0.52 ml,

5.8 mmol) was added dropwise (0.52 ml in 5 minutes). The reaction was removed from the ice
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bath and let stir for 16 hours at room temperature. The reaction was diluted with methylene
chloride (300 ml) and the organic layer was washed with DI water (3x250 ml), sat. sodium
bicarbonate (3x250 ml) and dried over Na,SO,4. The solvent was removed in vacuo and the
crude oil was purified by column chromatography on silica gel (30% EtOAc in Hexanes) to
afford 30 (6.49 g, 14.83 mmol, 76%) as a light yellow oil which turned to a white foam under

high vac.

'H NMR (CDCl3, 400 MHz) § 7.03 (d, J = 9.1 Hz, 2H), 6.83 (d, J = 9.1 Hz, 2H), 5.56 (dd, J =
11.1, 3.2 Hz, 0.75H), 5.51 (d, J = 3.2 Hz, 1.5H), 5.37 (d, J = 2.8 Hz, 0.25H), 4.84 (dd, J = 10.9,
3.3 Hz, 0.25H), 4.79 (d, J = 8.0 Hz, 0.25H), 4.39 (t, J = 6.6 Hz, 0.75H), 4.21 (dd, J = 11.3, 6.9
Hz, 0.25H), 4.17 — 4.05 (m, 2H), 3.99 — 3.90 (m, 0.5H), 3.82 — 3.72 (m, 3.75H), 2.16 (d, J = 5.0

Hz, 3H), 2.11 — 1.95 (m, 6H);
3¢ NMR (CDCls, 100 MHz) § 170.54, 170.25, 170.06, 170.01, 156.18, 155.90, 151.05, 150.47,
118.98, 118.49, 114.95, 114.86, 102.16, 98.21, 71.20, 68.41, 67.76, 67.65, 66.47, 61.78, 61.54,

60.91, 57.63, 55.90, 20.92, 20.86.;

HRMS Calcd for [M+Na]": 460.1332 Found: 460.1333.

Ph
1. cat. Na, MeOH rt, 1h
OAc OAc 2. DOWEX 50WX8 %o
o) _
Aco&% -
3. 2 eq. PhCH(OCHj3)s, )
N3 “OPMP cat. TsOHH,O HO
MeCN, rt, 8h, (84%) N3 "OPMP

Synthesis of p-methoxyphenyl 2-deoxy-2-azido-4,6-O-benzylidene-a/B-D-

galactoside (31): To a solution of compound 30 (1.07g, 2.45 mmol) in methanol (5 ml) was
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added solid sodium (0.056 g, 2.45 mmol). The reaction was let stir for 1 hour at room
temperature. The base was neutralized with DOWEX 50WX8 (H") cation exchange resin. The
resin was filtered and rinsed with methanol. The methanol was removed in vacuo and trace
methanol or water was removed by co-evaporation with toluene (3 x 5 ml). The crude product
was used directly in the next step. A flask containing the crude product was flushed with argon,
cat. p-toluenesulfonic acid monohydrate (0.045 g, 0.25 mmol) was added and the flask equipped
with a stir bar. To the solids was added acetonitrile (5 ml), followed by benzaldehyde dimethyl
acetal (0.55 ml, 3.67 mmol) while stirring. The reaction was let stir for 8 hours at room
temperature. The reaction was quenched with triethylamine (0.1 ml, 1.3 mmol) and the solvent
was removed in vacuo. The crude was purified by flash column chromatography on silica silica
gel (20% to 30% EtOAcCc gradient in hexanes) to afford 31 (0.82 g, 2.05 mmol, 84%) as a pale

yellow oil that turned into a white foam under high vac.

'H NMR (CDCl3, 400 MHz) § 7.51 (dd, J = 6.6, 3.2 Hz, 2H), 7.46 — 7.32 (m, 3H), 7.07 (dd, J =
12.0, 5.2 Hz, 2H), 6.92 — 6.78 (m, 2H), 5.67 — 5.51 (m, 1.75H), 4.74 (d, J = 8.1 Hz, 0.25H), 4.44
—4.31 (m, 1.75H), 4.26 (dd, J = 12.7, 1.3 Hz, 0.75H), 4.17 (d, J = 3.3 Hz, 0.25H), 4.09 — 4.00
(m, 1H), 3.87 (s, 1H), 3.77 (s, 3H), 3.69 (dd, J = 10.4, 3.3 Hz, 0.75H), 3.65 — 3.55 (m, 0.25H),

3.49 (s, 0.25H), 2.72 (dd, J = 32.3, 10.0 Hz, 1H).

3C NMR (CDCls, 100 MHz) § 155.9, 155.5, 151.3, 150.7, 137.4, 129.6, 128.5, 128.5, 126.6,

126.4, 119.1, 117.8, 115.0, 114.8, 102.0, 101.7, 101.5, 98.4, 75.6, 74.6, 71.6, 69.4, 69.2, 67.6,

66.9, 64.0, 63.6, 60.7, 55.9, 55.9;
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HRMS Calcd for [M+Na]": 422.1328 Found: 422.1341.

Ph Ph
% 1.2 eq. EDC, 1.2 eq. LevOH %
1.2 eq. Ef3N, cat. DMAP OO

0
o) -
%20 0 o)
o CH,Cly, rt, 8h, (90%) Levog&ﬁ

N3 "OPMP N3 "OPMP

Synthesis of p-methoxyphenyl 2-deoxy-2-azido-4,6-O-benzylidene-3-O-Levulinoyl-
a/B-D-galactoside (32): To a solution of compound 31 (0.68 g, 1.71 mmol), EDC (0.49 g,
2.56 mmol), and DMAP (21 mg, 0.17 mmol) in methylene chloride (20 ml) was added levulinic
acid (0.26 ml, 2.56 mmol) and triethylamine (0.36 ml, 2.56 mmol) while stirring. The reaction
was let stir for 8 hours at room temperature. The reaction was diluted with methylene chloride
(100 ml), the organic layer was washed with 5% CuSOagq) (2 X 150 ml), DI water ( 2 x 150 ml),
sat. sodium bicarbonate (3 x 150 ml) and dried over Na,SO4. The solvent was removed in vacuo
and the crude oil was purified by column chromatography on silica gel (20% to 40% EtOAc in
hexanes) to afford compound 32 (0.77 g, 1.54 mmol, 90%) as a pale yellow oil that turned to a

white foam under high vac.

'H NMR (CDCls, 400 MHz) & 7.61 — 7.47 (m, 2H), 7.38 (dd, J = 4.7, 2.4 Hz, 3H), 7.13 - 7.02
(m, 2H), 6.91 - 6.78 (m, 2H), 5.65 (d, J = 3.3 Hz, 0.75H), 5.61 — 5.52 (m, 1.75H), 4.87 — 4.77
(m, 0.5H), 4.51 (d, J = 3.0 Hz, 0.75H), 4.39 — 4.20 (m, 1.25H), 4.15 (dd, J = 10.8, 8.1 Hz,

0.25H), 4.05 (dd, J = 11.1, 3.3 Hz, 1.75H), 3.90 (s, 0.75H), 3.77 (s, 3H), 3.57 (d, J = 23.8 Hz,

0.25H), 2.88 — 2.61 (m, 4H), 2.12 (d, J = 7.3 Hz, 3H):
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3C NMR (CDCls, 100 MHz) & 206.33, 172.42, 172.31, 156.01, 155.57, 151.22, 150.62, 137.71,
129.35, 128.46, 126.60, 126.40, 119.33, 117.74, 114.99, 114.79, 102.19, 101.23, 100.99, 98.16,
73.60, 72.74, 72.27, 69.60, 69.30, 69.11, 66.70, 63.44, 60.35, 57.40, 55.92, 55.88, 38.15, 29.94,

28.43, 28.36.

HRMS Calcd for [M+Na]": 520.1696 Found: 520.1679.

o) 3 eq. (NH,),Ce(NO o)
o g. (NH4),Ce(NO3)s _ o
o) 4:1 MeCN:H,0 o)
LevO 0 °C to rt 10 min LevO
N; *OPMP N5 “OH

Ph

O

Ph
& 0
0 CCI,CN, DBU
0 - Lo 0
ev
0 CH,Cly, 1t, 1 h
LevO 272 N

19%
N “OH (19%) O._CCly

s

NH

Synthesis of 2-deoxy-2-azido-4,6-O-benzylidene-3-O-Levulinoyl-a/B-D-
galactopyranose trichloroacetimidate (21): To a solution of compound 32 (149 mg, 299
pmol) in a mixture of acetonitrile and water (1 ml, 4:1 acetonitrile/water) stirring at 0 °C in an
ice bath was added solid ceric ammonium nitrate (492 mg, 897 umol). The reaction was
removed from the ice bath and let warm to room temperature. The reaction was let stir for 10
minutes at room temperature. The reaction was diluted with DI water (5 ml) and extracted with
methylene chloride (3 x 15 ml). The organic fractions were pooled and washed with DI water
(3 x 50 ml), sat. sodium bicarbonate (3 x 50 ml), and dried over Na,SO,4. The solvent was

removed in vacuo and the crude oil was filtered over a plug of silica gel (20% to 50% EtOAc in

www.manaraa.com



74

hexanes) to afford the impure hemiacetal as an orange oil. The compound was pure enough to be
used directly in the next step. To the crude in methylene chloride (1 ml) was added
trichloroacetonitrile (0.36 ml, 2.99 mmol) and DBU (3 pl, 15 mmol). The reaction was let stir
for 1 hour at room temperature. The solvent was removed in vacuo and purified by flash column
chromatography on silica gel (30% EtOAc and 1% triethylamine in hexanes) to afford compound

21 (30.3 mg, 57 umol, 19%) as a pale yellow oil which turned to a white foam under high vac.
'H NMR (500 MHz, CDCl3) & 8.76 (s, 1H), 7.52 (dd, J = 7.5, 1.9 Hz, 2H), 7.46 — 7.31 (m, 3H),
5.56 (s, 1H), 5.37 (dd, J = 11.0, 3.3 Hz, 1H), 4.55 (d, J = 3.0 Hz, 1H), 4.30 (dt, J = 10.9, 2.4 Hz,

2H), 4.05 (dd, J = 12.8, 1.5 Hz, 1H), 3.97 (s, 1H), 2.85 — 2.60 (M, 4H), 2.12 (s, 3H).

3C NMR (125 MHz, CDCls) & 206.45, 172.39, 163.88, 160.93, 137.60, 129.50, 128.54, 126.48,

101.11, 95.66, 92.11, 91.12, 73.14, 70.19, 69.04, 65.13, 57.19, 38.11, 29.99, 28.40.

HRMS Calcd for [M+Na]": 557.0374 Found: 557.0385.

Ph
1. CH,Cl,/CF3CO,H/H,0
%o (2:1:1), rt, 10 min QAGOAc
0 L oé&H
ézo 2.4 eq. Ac,0, 6 eq. EtzN ev
N3 “OPMP

Synthesis of p-methoxyphenyl 4,6-O-diacetyl-2-deoxy-2-azido-3-O-Levulinoyl-a/-
D-galactopyranoside (33): To a solution of compound 32 (0.58 g, 1.17 mmol) in methylene
chloride (5 ml) was added aqueous trifluoroacetic acid (50% v/v, 10 ml). The reaction was

vigorously swirled at room temperature for 5-10 minutes until the starting material was
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completely consumed by TLC. The layers were separated and the water layer extracted twice
with methylene chloride (2 x 20 ml). The combined organic layer was washed with water (3 x
50 ml), sat. sodium bicarbonate (3 x 50 ml), and dried over Na,SO,. The organic solvent was
removed in vacuo to afford a yellow oil and trace water was removed by coevaporation with
toluene (3 x 5 ml). To a solution of the crude product in methylene chloride (5 ml) was added
triethylamine (0.98 ml, 7.01 mmol) and acetic anhydride (0.45 ml, 4.68 mmol). The reaction
was let stir for 8 hours at room temperature. The reaction was diluted with methylene chloride
(50 ml), washed with water (3 x 50 ml), washed with sat. sodium bicarbonate (3 x 50 ml), and
dried over Na,SO,. The organic layer was removed in vacuo and the crude syrup was purified

by flash column chromatography to afford 33 as a yellow syrup (0.39 g, 391 umol, 68%).

'H NMR (CDCls, 400 MHz) & 7.04 (d, J = 9.1 Hz, 2H), 6.83 (d, J = 9.1 Hz, 2H), 5.63 — 5.47 (m,
2.25H), 5.38 (dd, J = 9.9, 2.7 Hz, 0.25H), 4.87 — 4.76 (m, 0.5H), 4.39 (t, J = 6.5 Hz, 0.75H), 4.21
(dd, J = 11.2, 7.0 Hz, 0.25H), 4.12 — 4.03 (m, 1.5H), 3.99 — 3.89 (m, 0.5H), 3.77 (d, J = 2.5 Hz,

3.75H), 2.92 — 2.43 (m, 4.25H), 2.25 — 2.06 (M, 6H), 2.06 — 1.94 (M, 3H);
13C NMR (CDCl3, 100 MHz) § 206.27, 172.06, 170.58, 170.30, 155.93, 150.52, 119.02, 118.51,
114.97, 114.89, 102.17, 98.28, 71.53, 71.24, 68.74, 67.74, 67.69, 66.44, 61.85, 60.98, 57.71,

55.94, 38.09, 30.03, 28.08, 20.92, 20.90;

HRMS Calcd for [M+Na]": 516.1594 Found [M+Na]*: 516.1597, [2M+Na]": 1009.3298.
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OAc OAc 3 eq. (NH4)2CG(NO3)6 OAc OAc
LevO 4:1 MeCN:H-0O B LevO
N3 "OPMP ¢ G to rt 10 min N3 “OH
OAc OAc
OAG o(/;c CCI,CN, DBU, CH,Cl,
> LevO
VO oy T Th, (42%) N;
3 O _CCly
NH

Synthesis of 4,6-O-diacetyl-2-deoxy-2-azido-3-O-Levulinoyl-a/B-D-
galactopyranose trichloroacetimidate (22): To a solution of compound 33 (371 mg, 752
pumol) in a mixture of acetonitrile and water (2.2 ml, 4:1 acetonitrile/water) stirring at 0 °C in an
ice bath was added solid ceric ammonium nitrate (1.24 g, 2.26 mmol). The reaction was
removed from the ice bath and stir for 10 minutes. The reaction was diluted with DI water (10
ml) and extracted with methylene chloride (3 x 35 ml). The organic fractions were pooled and
washed with sat. sodium bicarbonate (3 x 100 ml), Brine (3 x 100 ml), and dried over Na;SO,.
The solvent was removed in vacuo and the crude oil was filtered over a plug of silica gel (20% to
50% EtOAc in hexanes) to afford a crude orange oil. The compound was pure enough to be used
in the next step. To a solution of the crude product in methylene chloride (2.2 ml) was added
trichloroacetonitrile (0.75 ml,7.52 mmol) and DBU (11 pl, 80 umol). The reaction was let stir
for 1 hour at room temperature. The solvent was removed in vacuo and purified by flash column
chromatography on silica gel (30% EtOAc and 1% triethylamine in hexanes) to afford compound

22 (0.17 g, .32 mmol, 42%) as a colorless oil.

'H NMR (500 MHz, CDCl3) & 8.79 (s, 1H), 6.47 (d, J = 3.5 Hz, 1H), 5.67 (d, J = 8.5 Hz, 1H),

5.49 (d, J = 2.2 Hz, 1H), 5.40 — 5.27 (m, 1H), 4.89 (dd, J = 10.8, 3.4 Hz, 1H), 4.37 (t, J = 6.4 Hz,
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1H), 4.17 - 3.98 (m, 3H), 3.92 (dd, J = 10.7, 8.5 Hz, 1H), 2.86 — 2.41 (m, 4H), 2.21 — 1.90 (m,

9H);
BC NMR (125 MHz, CDCls) 6 206.50, 172.12, 172.05, 170.75, 170.72, 170.53, 170.42, 163.96,
161.13, 161.03, 97.08, 94.94, 91.04, 90.69, 72.09, 71.93, 69.58, 69.39, 67.33, 66.46, 61.70,

61.29, 60.89, 57.52, 38.18, 38.14, 30.18, 28.19, 28.13, 21.08, 21.05.

HRMS Calcd for [M+Na]": 553.0272 Found: 553.0251.

1. cat. Na, MeOH rt, 1h

AcO N " HoX
C
3.1.2 eq. TBDPSCI
N3 “OPMP 3 eq. Imidazole N3 “OPMP
DMF, rt, 6-8h
(73%)

Synthesis of p-methoxyphenyl 2-deoxy-2-azido-6-O-t-butyldiphenylsilyl-a/B-D-
galactoside (34): To a solution of compound 30 (2.29 g, 5.24 mmol) in methanol (15 ml) was
added solid sodium (121 mg, 5.24 mmol). The reaction was let stir for 1 hour at room
temperature. The base was neutralized with DOWEX 50WX8 (H") cation exchange resin until
neutral pH (~7) was achieved. The resin was filtered and rinsed with methanol. The methanol
was removed in vacuo and trace methanol or water was removed by co-evaporation with toluene
(3 x 10 ml). The crude product was used directly in the next step. To flask containing the crude
product was added imidazole (1.04 g, 15.3 mmol), then the flask was purged with argon, and the
solids were dissolved in DMF (10 ml). To the reaction was added t-butylchloro(diphenyl)silane

(1.59 ml, 6.1 mmol) and the reaction was let stir for 8 hours at room temperature. The reaction
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was quenched with the addition of DI water (40 ml), EtOAc (30 ml) and allowing to stir for an
additional 2 hours. The layers were separated and the aqueous layer was extracted with EtOAc
(2 x 30 ml). The combined organic layers were washed with DI water (3 x 100 ml), brine (3 x
100 ml) and dried over Na,SO4. The organic solvent was removed in vacuo and the crude was
purified by flash column chromatography on silica gel (20% to 50% EtOAc gradient in hexanes)
to afford 34 (2.1 g, 3.82 mmol, 73%) as a pale yellow oil that turned into a white foam under

high vac.

'H NMR (CDCls, 400 MHz) § 7.76 — 7.61 (m, 4H), 7.50 — 7.30 (m, 6H), 7.02 (d, J = 9.1 Hz,
2H), 6.86 — 6.76 (m, 2H), 5.47 (d, J = 3.5 Hz, 0.75H), 4.73 (d, J = 8.1 Hz, .25H), 4.24 (s, 1.5H),
4.09 - 4.05 (m, 0.25H), 4.05 — 3.89 (m, 2.75H), 3.85 (dd, J = 10.0, 8.1 Hz, 0.25H), 3.77 (s, 3H),
3.66 (dd, J = 10.0, 3.4 Hz, 0.75H), 3.57 (dd, J = 9.1, 3.6 Hz, 0.25H), 3.48 (s, 0.75H), 3.15 (d, J =

3.3 Hz, 0.25H), 2.92 (d, J = 6.9 Hz, 0.75H), 1.08 (d, J = 5.6 Hz, 9H):

13C NMR (CDCls, 100 MHz) § 155.79, 155.55, 151.41, 150.98, 135.96, 135.90, 135.76, 132.90,

132.74, 130.24, 128.12, 128.07, 118.77, 118.47, 114.90, 114.82, 102.13, 98.54, 74.71, 72.59,

70.35, 70.23, 68.85, 68.77, 64.50, 64.27, 63.89, 60.73, 60.57, 55.91, 27.03, 21.31, 19.39, 14.45.

HRMS Calcd for [M+Na]": 572.2193 Found: 572.2198.

1. cat. TsOHH,0
10 eq. CH3C(OMe)s,

OH OTBDPS OAc OTBDPS
o Toluene, rt, 1h
HO - ~ LevO
N3 “OPMP 2. 80% aq. HOAc,40°C,1h N3 “OPMP

3. EDC, LevOH, Et3N,
cat. DMAP, CH,Cl,
rt, 8h, (85%)
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Synthesis of p-methoxyphenyl 4-O-acetyl-2-deoxy-2-azido-6-O-t-
butyldiphenylsilyl-3-O-Levulinoyl-a/B-D-galactoside (35): To a solution of compound
34 (1.78 g, 3.34 mmol) and p-toluenesulfonic acid monohydrate (63 mg, 0.33 mmol) in toluene
(20 ml) was added trimethylorthoacetate (4.24 ml, 33.34 mmol). The reaction was let stir for 1
hour, until compound 34 was completely consumed by TLC, at room temperature. The solvent
was removed in vacuo to afford a pale yellow oil that was used directly in the next step. To the
crude was added aqueous 80% acetic acid (10 ml) and the reaction was let stir for 1-2 hour, until
the orthoester intermediate was completely consumed by TLC, at 40 °C. The reaction was
diluted with water (40 ml) and extracted with methylene chloride (3 x 50 ml). The combined
organic layer was washed with DI water (3 x 150 ml), sat. sodium bicarbonate (3 x 150 ml), and
dried over Na,SO,4. The organic layer was removed in vacuo to afford a yellow oil. Trace
amounts of water or acetic acid were removed by coevaporating with toluene (3 x 10 ml). The
crude intermediate, EDC (0.96 g, 5.0 mmol), and DMAP (40 mg, 0.3 mmol) were dissolved in
methylene chloride (10 ml). To the reaction was added levulinic acid (0.51 ml, 5.0 mmol) and
triethylamine (0.7 ml, 5.0 mmol). The reaction was let stir for 8 hours at room temperature. The
reaction was diluted with methylene chloride (100 ml) and washed with 2N HCI (2 x 200 ml), DI
water (2 x 200 ml), sat. sodium bicarbonate (2 x 200 ml), and dried over Na,SO,4. The organic
solvent was removed in vacuo and the crude product was purified by column chromatography on
silica gel (20% to 30% EtOAc in hexanes) to afford 35 (1.89 g, 2.74 mmol, 85%) as a pale
yellow syrup that turned to a white foam under high vac.

'H NMR (CDCls, 400 MHz) & 7.68 — 7.50 (m, 4H), 7.48 — 7.30 (m, 6H), 7.03 (d, J = 9.1 Hz,

2H), 6.79 (d, J = 9.1 Hz, 2H), 5.66 — 5.53 (M, 1.6H), 5.46 (d, J = 3.4 Hz, 1H), 4.90 — 4.73 (m,
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0.4H), 4.28 (t, J = 6.7 Hz, 0.8H), 3.98 — 3.50 (m, 6H), 2.68 (M, 4H), 2.20 (d, J = 1.8 Hz, 3H),

2.03 (d, J = 3.3 Hz, 3H), 1.01 (d, J = 15.0 Hz, 9H);

3C NMR (125 MHz, CDCl3) § 205.92, 171.71, 171.61, 169.93, 169.83, 155.74, 155.58, 150.93,
150.49, 135.57, 135.53, 135.49, 132.85, 132.79, 132.68, 129.97, 129.88, 129.84, 127.86, 127.82,
127.80, 127.79, 118.54, 118.49, 114.70, 114.60, 101.76, 98.33, 73.84, 71.54, 69.91, 68.69, 67.62,

66.43, 61.71, 61.03, 57.68, 55.51, 37.80, 37.76, 29.64, 27.88, 27.80, 26.73, 26.71, 20.53, 19.03.

HRMS Calcd for [M+Na]*: 712.2666 Found: 712.2639.

LevO = LevO
4:1 MeCN:H,0
N3 “OPMP 0 °C to rt 10 min N3 “OH

OAc OTBDPS
OAc OTBDPS CCIsCN, DBU LevO go:
0 > N

Levogﬁh CH,Clp, rt, 1 h 0. _ccl
N; "OH (62%) \[(
NH

Synthesis of 4-O-acetyl-2-deoxy-2-azido-6-O-t-butyldiphenylsilyl-3-O-Levulinoyl-
a/B-D-galactopyranose trichloroacetimidate (23): To a solution of compound 35 (1.88
g, 2.72 mmol) in a mixture of acetonitrile and water (90 ml, 4:1 acetonitrile/water) stirring at O
°C in an ice bath was added solid ceric ammonium nitrate (4.47 g, 8.16 mmol). The reaction was
removed from the ice bath and let warm to room temperature. The reaction was let stir for 10
minutes at room temperature. The reaction was diluted with DI water (200 ml) and extracted
with ethyl acetate (3 x 100 ml). The organic fractions were pooled and washed with DI water (3

x 200 ml), sat. sodium bicarbonate (3 x 200 ml) and dried over Na;SO4. The solvent was
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removed in vacuo and the crude oil was filtered over a plug of silica gel (20% to 50% EtOAc in
hexanes) to afford an impure orange oil. The compound was pure enough to be used in the next
step. To a solution of the crude product in methylene chloride (22 ml) was added
trichloroacetonitrile (2.73 ml, 27.2 mmol) and DBU (20 pl, 0.03 mmol). The reaction was let stir
for 1 hour at room temperature. The solvent was removed in vacuo and purified by flash column
chromatography on silica gel (20% EtOAc and 1% triethylamine in hexanes) to afford compound

23 (1.23 g, 1.69 mmol, 63%) as a pale yellow oil which turned to a white foam under high vac.

'H NMR (400 MHz, CDCl3) § 8.74 (d, J = 7.3 Hz, 1H), 7.72 — 7.52 (m, 4H), 7.51 — 7.31 (m,
6H), 6.46 (d, J = 3.5 Hz, 0.5H), 5.75 — 5.66 (M, 1H), 5.56 (d, J = 2.9 Hz, 0.5H), 5.43 (dd, J =
11.1, 3.1 Hz, 0.5H), 4.94 (dd, J = 10.7, 3.3 Hz, 0.5H), 4.29 (t, J = 6.9 Hz, 0.5H), 4.02 — 3.86 (m,
1H), 3.68 (dddd, J = 17.8, 15.0, 10.1, 6.8 Hz, 2H), 2.95 — 2.41 (m, 4H), 2.28 — 1.95 (m, 6H), 1.00

(d, J = 6.2 Hz, 9H).

3C NMR (100 MHz, CDCls) & 206.35, 171.89, 171.81, 170.18, 170.06, 161.02, 160.94, 135.87,
135.78, 133.08, 130.14, 130.10, 128.03, 128.01, 97.03, 94.90, 91.01, 74.47, 72.10, 71.84, 69.46,
67.23, 66.31, 61.52, 61.16, 60.99, 57.58, 38.10, 38.07, 30.04, 28.09, 28.02, 26.95, 26.91, 20.90,

20.84,19.32, 19.29.

HRMS Calcd for [M+Na]": 751.1322 Found: 751.1292.

Ph Ph
& &o
0 1.2 eq. TBSCI o
(0] 2.5 eq. Imidazole 0
O ~ TBSO OPMP
HO OPMP  DMF, rt, 24h OH
OH (66%)
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Synthesis of p-methoxyphenyl 4,6-O-benzylidene-3-O-t-butyldimethylsilyl-B-D-
galactoside (37): To a solution of p-methoxyphenyl 4,6-O-benzylidene-f-D-galactoside (7.45
g, 19.9 mmol) and imidazole (3.39 g, 50 mmol) in DMF (50 ml) was added t-
butylchlorodimethylsilane (3.9 g, 26 mmol). The reaction was let stir for 24 hours at room
temperature. The reaction was quenched with addition of DI water (300 ml) and EtOAc (200
ml) and the reaction was let stir for an additional 2 hours at room temperature. The layers were
separated and the aqueous layer was extracted one time with EtOAc (200 ml). The combined
organic layers were washed with DI water (3 x 400 ml) and dried over Na;SO,4. The crude
product was purified by column chromatography on silica gel (50% EtOAc in hexanes) to afford

37 (6.43 g, 13.2 mmol, 66%) as a colorless oil that turned to a white foam under high vac.

'H NMR (CDCls, 400 MHz) & 7.60 — 7.49 (m, 2H), 7.40 — 7.30 (m, 3H), 7.06 (d, J = 9.0 Hz,
2H), 6.80 (d, J = 9.0 Hz, 2H), 5.53 (s, 1H), 4.79 (d, J = 7.8 Hz, 1H), 4.35 (d, J = 12.3 Hz, 1H),
4.06 (dt, J = 9.8, 7.0 Hz, 3H), 3.83 — 3.74 (m, 4H), 3.49 (s, 1H), 0.93 (s, 9H), 0.15 (d, J = 4.6 Hz,

6H);
13C NMR (CDCls, 100 MHz) § *C NMR (101 MHz, cdcls) & 155.62, 151.62, 138.16, 128.97,
128.27, 126.43, 119.41, 114.62, 102.93, 101.08, 76.57, 74.35, 70.81, 69.44, 67.04, 55.86, 26.01,

18.51, -4.08, -4.37;

HRMS Calcd for [M+Na]": 511.2128 Found: 511.2123.
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Ph Ph
% 1.3 eq. Ac,0, 5 eq. Et3N \v
OO cat. DMAP, CH,Cl,

0
rt, 8h o
°__opmP g °__opmpP
TBSO 2.3 eq. EtN(HF)s, 6 q. EtzN HO

OH rt, 72h (68%) OAc

Synthesis of p-methoxyphenyl 2-O-acetyl-4,6-O-benzylidene-B-D-galactoside (38):
To a solution of 37 (6.33 g, 13.0 mmol) and DMAP (159 mg, 1.3 mmol) in methylene chloride
(40 ml) was added triethylamine (10.8 ml, 77.7 mmol) and acetic anhydride (4.9 ml, 52 mmol).
The reaction was let stir for 8 hours at room temperature. The reaction was diluted with
methylene chloride (260 ml) and washed with DI water(3 x 300 ml), sat. sodium bicarbonate(3 x
300 ml), and dried over Na,SO4. The solvent was removed in vacuo and any trace water was
coevaporated with toluene (3 x 25 ml) to afford a crude white solid. To crude product in DMF
(20 ml) was added triethylamine (7.22 ml, 51.8 mmol) and triethylamine trihydrogen fluoride
complex (4.22 ml, 25.9 mmol). The reaction was let stir for 72 hours at room temperature. The
reaction was quenched with the addition of DI water (200 ml). The precipitate was filtered and
recrystallized from CHCls/hexanes mixture to afford 38 (3.68 g, 8.84 mmol, 68%) as a white

solid.

'H NMR (400 MHz, CDCl3) & 7.53-7.50 (m, 2H), 7.37-7.36 (m, 3H), 6.99 (d, J = 9.1 Hz, 2H),
6.80 (d, J = 9.1 Hz, 2H), 5.54 (s, 1H), 5.30 (dd, J = 9.9, 8.1 Hz, 1H), 4.87 (d, J = 8.0 Hz, 1H),
4.40 — 4.30 (m, 1H), 4.23 (d, J = 3.5 Hz, 1H), 4.07 (dd, J = 12.5, 1.5 Hz, 1H), 3.89 — 3.67 (m,

4H), 3.54 (s, 1H), 2.88 (d, J = 24.9 Hz, 1H), 2.13 (d, J = 3.3 Hz, 3H).

13C NMR (100 MHz, CDCls) 6 170.42, 155.49, 151.22, 137.23, 129.27, 128.21, 126.42, 118.91,

114.41, 101.46, 100.55, 75.34, 71.96, 71.55, 68.81, 66.59, 55.58, 25.44, 20.94.
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HRMS Calcd for [M+Na]": 439.1369 Found: 439.1353.
Ph

So
o}

Ph
1.2 eq. EDC, 1.2 eq. LevOH %O
o 1.2 eq. Ef3N, cat. DMAP o
HO OPMP ~  LevO OPMP
CH,Cls, rt, 8h, (80%)

OAc OAc

Synthesis of p-methoxyphenyl 2-O-acetyl-4,6-O-benzylidene-3-O-levulinoyl-B-D-
galactoside (39): To a solution of compound 23 (3.56 g, 8.55 mmol), EDC (2.46 g, 12.8
mmol), and DMAP (104 mg, 0.86 mmol) in methylene chloride (20 ml) was added levulinic acid
(1.31 ml, 12.8 mmol) and triethylamine (1.8 ml, 12.8 mmol). The reaction was let stir for 8
hours at room temperature. The reaction was diluted with methylene chloride (280 ml), the
organic layer was washed with 5% CuSOagq) (2 X 200 ml), DI water (2 x 200 ml), sat. sodium
bicarbonate (2 x 200 ml) and dried over Na,SO,4. The solvent was removed in vacuo and the
crude oil was purified by column chromatography on silica gel (20% to 30% EtOAc in hexanes)
to afford compound 39 (3.56 g, 6.80 mmol, 80%) as a pale yellow oil that turned to a white foam

under high vac. 'H

'H NMR (400 MHz, CDCl3) & 7.54 (dd, J = 7.5, 2.0 Hz, 2H), 7.38 (dd, J = 4.8, 2.4 Hz, 3H), 7.06
—6.94 (m, 2H), 6.87 — 6.76 (m, 2H), 5.60 (dd, J = 10.4, 8.0 Hz, 1H), 5.52 (s, 1H), 5.05 (dd, J =
10.4, 3.6 Hz, 1H), 4.96 (d, J = 8.0 Hz, 1H), 4.36 (dd, J = 13.2, 2.2 Hz, 2H), 4.08 (dd, J = 12.5,
1.7 Hz, 1H), 3.77 (s, 3H), 3.59 (d, J = 0.9 Hz, 1H), 2.80 — 2.50 (m, 4H), 2.09 (d, J = 13.4 Hz,

6H).
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13C NMR (100 MHz, cdcl3) & 206.56, 172.39, 169.79, 155.91, 151.53, 137.75, 129.41, 128.46,
126.77, 119.40, 114.74, 101.45, 101.30, 73.53, 72.26, 69.12, 68.68, 66.79, 55.93, 38.03, 29.92,

28.50, 21.16.

HRMS Calcd for [M+Na]": 537.1736 Found [M+Na]": 537.1732, [2M+Na]": 1051.3625.

'Lh Ph
o7 o
0 3 eq. (NH4)2C€(N03)6 O
PMP > &
LevO " © 4:1 MeCN:H,0 LevO OH
c 0 °C to rt 10 min OAc
Ph Ph
o Lo
9 CCI,CN, DBU 0
(@) >
LevO OH CH2C|2, rt, 1h LevO 5
OAc (82%) “o_ _ccl,

NH
Synthesis of 2-O-acetyl-4,6-O-benzylidene-3-O-levulinoyl-B-D-galactopyranose
trichloroacetimidate (24): To a solution of compound 39 (3.46 g, 6.73 mmol) in a mixture of
acetonitrile and water (225 ml, 4:1 acetonitrile/water) stirring at 0 °C in an ice bath was added
solid ceric ammonium nitrate (11.1 g, 20.2 mmol). The reaction was removed from the ice bath
and was let stir for 10 minutes.. The reaction was diluted with DI water (500 ml) and extracted
with ethyl acetate (3 x 150 ml). The organic fractions were pooled and washed with sat. sodium
bicarbonate (3 x 500 ml) and brine (3 x 500 ml) dried over Na,SO,4. The solvent was removed in
vacuo and the crude oil was purified by column chromatography on silica gel (20% to 30%
EtOAc in hexanes) to afford impure compound an orange oil. The compound was pure enough
to be used in the next step. To a solution of the crude intermediate in methylene chloride (60 ml)

was added trichloroacetonitrile (6.75 ml, 67.3 mmol) and DBU (50 pl, 0.33 mmol). The reaction
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was let stir for 1 hour at room temperature. The solvent was removed in vacuo and purified by
flash column chromatography on silica gel (20% EtOAc and 1% triethylamine in hexanes) to
afford compound 24 (3.86 g, 6.99 mmol, 82%) as a pale yellow oil which turned to a white foam

under high vac.

'H NMR (500 MHz, CDCls) § 8.79 (s, 1H), 6.47 (d, J = 3.5 Hz, 1H), 5.67 (d, J = 8.5 Hz, 1H),
5.49 (d, J = 2.2 Hz, 1H), 5.40 — 5.27 (m, 1H), 4.89 (dd, J = 10.8, 3.4 Hz, 1H), 4.37 (t, J = 6.4 Hz,
1H), 4.17 - 3.98 (m, 3H), 3.92 (dd, J = 10.7, 8.5 Hz, 1H), 2.86 — 2.41 (m, 4H), 2.21 — 1.90 (m,

9H).

13C NMR (100 MHz, cdcl3) & 206.44, 172.33, 170.33, 161.21, 137.64, 129.42, 128.50, 126.55,

101.22, 94.83, 91.26, 73.63, 69.02, 68.78, 67.10, 65.00, 38.02, 29.96, 28.39, 20.87.

HRMS Calcd for [M+Na]": 574.0414 Found:574.0427.

1. cat. TsOHH,0

OH OTBDPS 10 eq. CH3C(OMe)s, OAc OTBDPS
0 Toluene, rt, 1h o
HO OPMP > HO OPMP
OH 2. 2 eq. Acy0, 3 eq. Ef3N, OAc
CH,Cl,, rt, 6h.
3. 80% aq. HOAc, 40 °C, 1 h
(65%)

Synthesis of p-methoxyphenyl 2,4-O-diacetyl-6-O-t-butyldiphenylsilyl-B-D-
galactoside (41): To a solution of compound p-methoxyphenyl 6-O-t-butyldiphenylsilyl-p-D-
galactoside (16.7 g, 32.8 mmol) and p-toluenesulfonic acid monohydrate (0.63 g, 3.28 mmol) in
toluene (100 ml) was added trimethylorthoacetate (42 ml, 3.28 mmol). The reaction was let stir
for 1 hour, until the starting material was completely consumed by TLC analysis, at room

temperature. The solvent was removed in vacuo to afford a pale yellow oil that was used directly
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in the next step. Trace methanol and water was removed by coevaporation with toluene (3 x 25
ml). To the crude oil was added methylene chloride (100 ml), triethylamine (27 ml, 197 mmol),
and acetic anhydride (9.31 ml, 98.5 mmol). The reaction was let stir for 6 hours at room
temperature. The reaction was diluted with methylene chloride (300 ml), washed with sat.
sodium bicarbonate (3 x 400 ml), and dried over Na,SO,. The solvent was removed in vacuo to
afford a pale yellow oil which was used directly in the next step. To the crude oil was added
aqueous 80% acetic acid (75 ml) and the reaction was let stir for 1-2 hour, until the intermediate
was completely consumed, at 40 °C. The reaction was diluted with water (350 ml) and extracted
with methylene chloride (3 x 200 ml). The combined organic layer was washed with DI water (3
x 400 ml), sat. sodium bicarbonate (3 x 400 ml), and dried over Na,SO,4. The organic layer was
removed in vacuo to afford a light yellow oil that turned to a white solid if let sit over night.
The crude product was purified by recrystallization from a CHCls/hexanes mixture to provide 41

(12.6 g, 51.26 mmol, 65%) as a white amorphous solid.

'H NMR (CDCls, 400 MHz) & 7.69 — 7.58 (m, 4H), 7.40 (ddd, J = 9.3, 7.6, 2.1 Hz, 6H), 7.02 -
6.91 (m, 2H), 6.81 — 6.72 (M, 2H), 5.45 (d, J = 3.5 Hz, 1H), 5.21 (dd, J = 10.0, 8.0 Hz, 1H), 4.87
(d, J = 7.9 Hz, 1H), 3.96 — 3.88 (m, 1H), 3.83 —3.72 (m, 6H), 2.69 (d, J = 5.5 Hz, 1H), 2.15 (s,

3H), 2.07 (s, 3H), 1.06 (s, 9H) ;

13C NMR (CDCls3, 100 MHz) 6 171.43, 171.29, 155.74, 151.57, 135.86, 135.84, 133.21, 133.11,

130.19, 130.09, 128.09, 128.04, 118.71, 114.79, 100.74, 74.42, 72.97, 72.05, 70.05, 62.18, 55.92,

27.04, 21.26, 21.06, 19.39;.
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HRMS Calcd for [M+Na]*: 631.2339 Found [M+Na]*: 631.2348, [2M+Na]": 1239.4775.

OAc OTBDPS 1.2 eq. EDC, 1.2 eq. LevOH OAc OTBDPS
0 1.2 eq. Et3N, cat. DMAP o
HO OPMP > LevO OPMP
OAC CH,Cl,, rt, 8h, (89%) OAc

Synthesis of p-methoxyphenyl 2,4-O-diacetyl-6-O-t-butyldiphenylsilyl-3-O-
Levulinoyl-B-D-galactoside (42): To a solution of compound 41 (12.28 g, 20.21 mmol),
EDC (5.81 g, 30.3 mmol), and DMAP (247 mg, 2.02 mmol) in methylene chloride (100 ml) was
added levulinic acid (3.1 ml, 30.3 mmol) and triethylamine (4.22 ml, 30.3 mmol). The reaction
was let stir for 8 hours at room temperature. The reaction was diluted with methylene chloride
(300 ml), the organic layer was washed with 2N HCI (2 x 400 ml), DI water (2 x 400 ml), sat.
sodium bicarbonate (2 x 400 ml), and dried over Na,SO,. The solvent was removed in vacuo
and the crude oil was purified by column chromatography on silica gel (20% to 50% EtOAc in
hexanes) to afford compound 42 (12.71 g, 18.0 mmol, 89%) as a pale yellow oil that turned to a

white foam under high vac.

'H NMR (400 MHz, CDCl3) & 7.67 — 7.51 (m, 4H), 7.37 (dt, J = 14.3, 7.0 Hz, 6H), 6.93 (d, J =
8.8 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 5.49 (s, 1H), 5.47 — 5.32 (m, 1H), 5.08 (dd, J = 10.4, 2.8
Hz, 1H), 4.88 (d, J = 8.0 Hz, 1H), 3.84 (t, J = 6.4 Hz, 1H), 3.81 — 3.73 (m, 1H), 3.72 (s, 3H), 3.69

—3.63 (m, 1H), 2.80 (d, J = 7.6 Hz, 4H), 2.17 — 1.98 (m, 9H), 1.01 (s, 9H).

3C NMR (100 MHz, CDCls) & 206.14, 171.68, 170.13, 169.63, 155.51, 151.15, 135.54, 135.53,

132.78, 132.66, 129.88, 129.79, 127.78, 127.74, 118.46, 114.48, 100.73, 73.76, 71.37, 68.78,

67.09, 61.49, 55.59, 37.64, 29.64, 27.80, 26.67, 20.76, 20.65, 19.01.
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HRMS Calcd for [M+Na]": 729.2707 Found: 729.2691.

OAc OTBDPS QAc OTBDPS
N 3 eq. (NH,)2Ce(NO3)e 0
OPMP T LevO OH
LevO e 4:1 MeCN:H,0 & OAc
c 0 °C to rt 10 min
OAc OTBDPS
OAc OTBDPS CCI;CN, DBU
(0] » LevO
LevO OPMP CH,Cly, rt, 1 h AcO
OAc (81%) OYC%
NH

Synthesis of 2,4-O-diacetyl-6-O-t-butyldiphenylsilyl-3-O-Levulinoy|-B-D-
galactopyranose trichloroacetimidate (25): To a solution of compound 42 (2.91 g, 4.22
mmol) in a mixture of acetonitrile and water (137 ml, 4:1 acetonitrile/water) stirring at 0 °C in an
ice bath was added solid ceric ammonium nitrate (5.59 g, 12.35 mmol). The reaction was
removed from the ice bath and was let stir for 10 minutes. The reaction was diluted with DI
water (300 ml) and extracted with ethyl acetate (3 x 100 ml). The organic fractions were pooled
and washed with sat. sodium bicarbonate (3 x 200 ml), brine (3 x 200 ml) and dried over
Na,SO,4. The solvent was removed in vacuo and the crude oil was filtered through a plug of
silica gel (20% to 50% EtOAc in hexanes) to give an impure orange oil. The compound was
pure enough to be used in the next step. To a the crude product in methylene chloride (20 ml)
was added trichloroacetonitrile (4.13 ml, 41.2 mmol) and DBU (30 pl, 0.41 mmol). The
reaction was let stir for 1 hour at room temperature. The solvent was removed in vacuo and
purified by flash column chromatography on silica gel (20% EtOAc and 1% triethylamine in
hexanes) to afford compound 25 (2.48 g, 3.32 mmol, 81% ) as a pale yellow oil which turned to

a white foam under high vac.
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'H NMR (400 MHz, CDCls) 5 8.63 (d, J = 23.8 Hz, 1H), 7.58 (d, J = 6.9 Hz, 4H), 7.38 (tdd, J =
14.6, 6.2, 2.4 Hz, 6H), 6.53 (d, J = 3.7 Hz, 1H), 5.84 (d, J = 8.3 Hz, 1H), 5.64 (dd, J = 37.5, 2.4
Hz, 1H), 5.47 (dd, J = 10.8, 3.2 Hz, 1H), 5.34 (dd, J = 10.8, 3.7 Hz, 1H), 5.16 (dd, J = 10.5, 3.4
Hz, 1H), 4.30 (t, J = 6.9 Hz, 1H), 4.02 (dt, J = 13.8, 6.5 Hz, 1H), 3.82 — 3.56 (m, 2H), 2.90 — 2.36

(m, 4H), 2.17 (d, J = 6.5 Hz, 3H), 2.08 — 2.00 (m, 6H), 1.01 (d, J = 5.9 Hz, 9H).

3C NMR (100 MHz, CDCls) & 206.55, 171.90, 170.56, 170.27, 161.22, 135.89, 135.80, 133.12,
130.13, 130.09, 128.04, 128.00, 110.30, 96.38, 93.92, 91.17, 71.73, 68.34, 67.73, 67.27, 61.51,

37.97, 30.05, 28.06, 26.96, 26.93, 20.95, 20.88, 20.85, 19.33.

HRMS Calcd for [M+Na]": 766.1385 Found: 766.1368.

Ph CoF 17
%o CoF 17O Ph
: )}
0 HO N So \L
LevO o 0
N, cat. TMSOTf 0
O _CCly LevO
\ﬂ/ Solvent N3 %0 |

NH

\J

General Synthesis of 1H,1H,2H,2H,3H,3H-perfluoroundecyloxybutenyl 2-deoxy-2-
azido-4,6-O-benzylidene-3-O-Levulinoyl-a/B-D-galactopyranoside (43/44). Toa
solution of 1H,2H,2H,3H,3H-perfluoroundecyloxybutenyl alcohol (~67 umol, 1 eq.) in solvent
was added thiophene (~670 umol, 10 eq.), if used, and donor 17 (~200 umol, 3 eq.). The
reaction was let stir for 30 minutes while allowing for the mixture to reach the desired
temperature. A solution of TMSOTT in methylene chloride (0.9 ml of 230 mmol, ~20 umol, 0.3

eq.) was added to the reaction while stirring. The products were easily separable by column
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chromatography on silica gel (20% EtOAc in hexanes) to give compounds 43 and 44 as colorless

oils. Anomeric assignments were based on COSY experiments to identify Hanomeric and *H to

determine coupling constant.

Table Ill. Glycosylation conditions. All reactions were run at 0.4M with respect to donor 17.

*Reaction was run at 0.01M with respect to donor 17.

Entry Solvent Thiophene Temperature Yield Selectivity
1 CHCl; N/A 25°C 80 All B
2 CH.CI, 10 eq. 0°C 70 1.2:1 alp
3 CHCl; 10 eq. 25°C 73 1.1:1 o/p
4 Et,O N/A 0°C 30 2.5:1a/p
5* Et,O N/A 0°C 82 3.5:1a/p

Compound 43 (a): Hanomeric at 5.04 (d, J = 3.2 Hz)

'H NMR (400 MHz, cdcl3) 6 7.49 (dd, J = 6.7, 2.9 Hz, 1H), 7.45 - 7.33 (m, 1H), 5.76 (q, J = 5.7
Hz, 1H), 5.59 (s, 1H), 5.04 (d, J = 3.4 Hz, 1H), 4.44 — 3.96 (m, 4H), 3.77 (s, 1H), 3.61 (dd, J =
10.5, 3.4 Hz, 1H), 3.50 (t, J = 6.0 Hz, 1H), 2.43 (d, J = 10.8 Hz, 1H), 2.30 - 2.08 (m, 1H), 1.89
(dd, J=10.1, 5.7 Hz, 1H).

Compound 44 (B): Hanomeric at 4.33 (d, J = 8 Hz)

'H NMR (400 MHz, cdcl3) 6 7.45 (dd, J = 7.3, 2.1 Hz, 2H), 7.30 (dd, J = 4.9, 2.3 Hz, 3H), 5.80
—5.63 (m, 2H), 5.46 (s, 1H), 4.68 (dd, J = 10.8, 3.5 Hz, 1H), 4.44 (dd, J = 12.5, 5.6 Hz, 1H), 4.33
(d, J=8.0 Hz, 1H), 4.29 - 4.13 (m, 3H), 3.98 (dd, J = 8.7, 3.7 Hz, 3H), 3.84 (dd, J = 10.8, 8.0
Hz, 1H), 3.41 (dd, J = 14.3, 8.3 Hz, 3H), 2.63 (dtd, J = 10.8, 7.1, 2.9 Hz, 4H), 2.22 — 2.00 (m,

5H), 1.86 — 1.74 (m, 2H).
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1. cat. Na, MeOH rt, 1h >I\\‘/

OAC OOAC 2. DOWEX 50WX8 SEC‘)O
ACO%@ . =
N, “OPMP 3 (Ctsugsmoﬁ)z, Py HO&M
H,Cl,, rt, 10h N; “OPMP

(64%)
Synthesis of p-methoxyphenyl 2-deoxy-2-azido-4,6-O-[bis(t-Butyl)silylene]-a-D-
galactopyranoside (46): To a solution of compound 30 (4.14 g, 9.46 mmol) in methanol (25
ml) was added solid sodium (220 mg, 9.46 mmol). The reaction was let stir for 1 hour at room
temperature. The base was neutralized with DOWEX 50WX8 (H™) cation exchange resin until
neutral pH (~7) was achieved. The resin was filtered and rinsed with methanol. The methanol
was removed in vacuo and trace methanol or water was removed by co-evaporation with toluene
(3 x 10 ml). The crude product was used directly in the next step. To flask containing the crude
product was purged with argon and the material was dissolved in methylene chloride (20 ml).
To the reaction was added pyridine (2.3 ml, 28.4 mmol) followed by the dropwise addition (~.8
ml/min) of di-tert-butylsilyl bus(trifluoromethanesulfonate) (3.7 ml, 11.35 mmol). The reaction
was let stir at rt for 10 hours. The reaction was diluted with methylene chloride the organic layer
was washed with DI water (3 x 100 ml), brine (3 x 100 ml) and dried over Na,SO4. The organic
solvent was removed in vacuo and the crude was purified by flash column chromatography on
silica gel (20% to 30% EtOAc gradient in hexanes) to afford 46 (2.74 g, 6.07 mmol, 64%) as a

pale yellow oil that turned into a white foam under high vac.

4 NMR (400 MHz, CDCI3) & 7.04 (d, J = 9.0 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 4.69 (dd, J =

21.1, 8.1 Hz, 1H), 4.42 (dd, J = 30.3, 3.0 Hz, 1H), 4.33 — 4.18 (m, 2H), 4.18 — 3.83 (m, 1H), 3.83

—3.69 (M, 4H), 3.61 — 3.36 (M, 2H), 2.79 (t, J = 18.1 Hz, 1H), 1.07 (d, J = 9.3, Hz, 18H).
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3C NMR (100 MHz, CDCI3) & 156.07, 151.41, 119.70, 119.66, 114.79, 102.56, 102.28, 76.99,
73.86, 72.94, 72.65, 71.94, 71.72, 67.08, 64.49, 55.94, 27.77, 27.69, 27.61, 27.52, 23.69, 23.63,

21.10, 20.98, 20.84.

HMRS Calcd for [M+Na]": 474.2036 Found: 474.2026.

%* ng

Sto Si-o

o) 1.2 eq. EDC, 1.2 eq. LevOH : o
1.2 eq. Ef3N, cat. DMAP
o} 3 - o)
HO - LevO
OPMP CH,Cl,, rt, 8h, (82%) OPMP

N3 N,

Synthesis of p-methoxyphenyl 2-deoxy-2-azido-3-O-Levulinoyl-4,6-O-[bis(t-
Butyl)silylene]-a-D-galactopyranoside(47): To a solution of compound 46 (1.5 g, 3.32
mmol), EDC (0.76 g, 3.99 mmol), and DMAP (41 mg, 0.33 mmol) in methylene chloride (12 ml)
was added levulinic acid (0.41 ml, 3.99 mmol) and triethylamine (0.56 ml, 3.99 mmol). The
reaction was let stir for 8 hours at room temperature. The reaction was diluted with methylene
chloride (280 ml), the organic layer was washed with 2N HCI (2 x 200 ml), DI water (2 x 200
ml), sat. sodium bicarbonate (2 x 200 ml) and dried over Na,SO,4. The solvent was removed in
vacuo and the crude oil was purified by column chromatography on silica gel (20% to 30%
EtOACc in hexanes) to afford compound 47 (1.5 g, 2.73 mmol, 82%) as a pale yellow oil that

turned to a white foam under high vac.

14 NMR (500 MHz, cdcl3) § 7.13 - 6.98 (m, 2H), 6.92 — 6.72 (m, 2H), 4.72 (d, J = 8.0 Hz, 1H),

4.62 — 4.55 (m, 2H), 4.26 — 4.17 (m, 2H), 4.04 (dd, J = 10.4, 8.0 Hz, 1H), 3.73 (d, J = 3.2 Hz,

3H), 3.43 (s, 1H), 2.80 — 2.65 (M, 4H), 2.17 (s, 3H), 1.05 (d, J = 32.6 Hz, 18H).
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3C NMR (125 MHz, CDCI3) & 206.02, 172.20, 155.99, 151.20, 119.60, 114.68, 102.22, 74.25,

71.32, 69.40, 67.01, 60.47, 55.74, 38.02, 29.90, 28.27, 27.65, 27.59, 23.41, 20.93.

HRMS Calcd for [M+Na]": 537.1736 Found [M+Na]": 537.1732, [2M+Na]": 1051.3625.

?LS‘{)O 3 eq. (NHq):CoNOz)y )LS‘\(\)O
%:‘O

4:1 MeCN:H,0

o)
LevO 0 °C to rt 10 min LevO
N; *OPMP N; “OH

\\/ >LS|\\
Si-o CCI,CN, DBU ?
9 _ 0
o CH,Cly, rt, 1 h LVOA—
Levo (67%) O.__CCly

N, "“OH N

NH

Synthesis of 2-deoxy-2-azido-3-O-Levulinoyl-4,6-O-[bis(t-Butyl)silylene]-a-D-
galactose trichloroacetimidate(45): To a solution of compound 47 (1.38 g, 2.56 mmol) in
a mixture of acetonitrile and water (75 ml, 4:1 acetonitrile/water) stirring at 0 °C in an ice bath
was added solid ceric ammonium nitrate (4.13 g, 8.08 mmol). The reaction was removed from
the ice bath and let stir for 10 minutes. The reaction was diluted with DI water (150 ml) and
extracted with ethyl acetate (3 x 75 ml). The organic fractions were pooled and washed with
sat. sodium bicarbonate (3 x 200 ml), brine (3 x 200 ml) and dried over Na,SO,4. The solvent
was removed in vacuo and the crude oil was filtered over a plug of silica gel (20% to 50%

EtOAc in hexanes) to afford the impure hemiacetal as an orange oil. The compound was pure
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enough to be used directly in the next step. To the crude in methylene chloride (5 ml) was added
trichloroacetonitrile (0.60 ml, 6.03 mmol) and DBU (30 pl, 0.2 mmol). The reaction was let stir

for 1 hour at room temperature. The solvent was removed in vacuo and purified by flash column
chromatography on silica gel (10% EtOAc and 1% triethylamine in hexanes) to afford compound

45 (1.01 g, 1.72 mmol, 67%) as a pale yellow oil which turned to a white foam under high vac.

'H NMR (400 MHz, CDCl3) & 8.73 (s, 1H), 6.49 (d, J = 3.5 Hz, 1H), 5.18 (dd, J = 10.9, 2.9 Hz,
1H), 4.81 (d, J = 2.7 Hz, 1H), 4.30 — 4.12 (m, 3H), 3.97 (s, 1H), 2.88 — 2.64 (m, 4H), 2.20 (s,

3H), 1.04 (d, J = 8.4 Hz, 18H).

3C NMR (100 MHz, CDCls) & 206.08, 172.29, 160.96, 95.54, 91.03, 71.99, 69.92, 69.80, 66.68,

56.85, 38.03, 29.99, 28.30, 27.73, 27.43, 23.44, 20.94.

HRMS Calcd for [M+Na]*: 609.1082 Found: 609.1081.
1. 1 eq. HO-Ftag, \‘/
cat. TMSOTf Si.
CH,Cl,, 1, 1h \k bO
3eq.45 -
2.5 eq. NH,NH,H,0, HO goz
N

Py/HOAc (4:1)OH
5eq. >~ ‘OFtag

(53%)

Synthesis of cis-3-(perfluorooctyl)propyloxy-2-butenyl 2-deoxy-2-azido-4,6-O-
[bis(t-Butyl)silylene]-a-D-galactoside(48): To FtagOH (149 mg, 0.27 mmol) and 45 (400
mg, 0.82 mmol) in methylene chloride (2.4 ml) was added TMSOTT (0.36 ml of 230 mM, 81

pumol) at room temperature. The reaction was quenched with 0.1 ml Et;N and the solvent was
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removed in vacuo. The crude was taken up in a mixture of pyridine and acetic acid (1 ml, 4:1
Py/HOAC) to which was added allyl alcohol (0.14 ml, 2.04 mmol) and hydrizine hydrate (0.1 ml,
2.04 mmol). The reaction was let stir for 3 hours at room temperature. To the reaction was
added 0.2 ml water and the reaction mixture was loaded directly onto fluorofllash silica gel.
Non-fluorous compounds were eluted with 80% MeOH ,q) and fluorous compounds were eluted
with MeOH. The fluorous containing fractions were concentrated and further purified by flash

column chromatography to provide compound 48 (127 mg, 145 umol, 53%) as a white foam.

'H NMR (400 MHz, CDCl3) 8 5.74 (q, J = 4.8 Hz, 2H), 4.95 (d, J = 3.5 Hz, L1Hanomeric), 4.46 (d, J
= 2.9 Hz, 1H), 4.33 — 4.26 (m, 1H), 4.23 — 4.12 (m, 3H), 4.02 (dd, J = 24.1, 7.9 Hz, 3H), 3.77 (s,
1H), 3.52 — 3.43 (m, 3H), 2.63 (d, J = 10.4 Hz, 1H), 2.17 (td, J = 18.8, 9.8 Hz, 2H), 1.87 (td, J =

11.8, 6.0 Hz, 2H), 1.04 (d, J = 13.9 Hz, 18H).

13C NMR (101 MHz, CDCls) & 130.60, 128.18, 97.84, 73.14, 69.13, 68.98, 67.65, 67.07, 66.79,

63.84, 60.91, 30.01, 27.83, 27.48, 23.65, 21.01.

HRMS Calcd for [M+Na]": 898.2156 Found: 898.2137.

+ +

Si- Si-
-0 TBDPSO -0
#/ o 25, cat. TMSOTf _ TBRCR o
Ho Xo22 CH,CL, 0°C, 1h | oo N2 o N2
N, (96%) OAc N,
OFtag OFtag

Synthesis of cis-3-(perfluorooctyl)propyloxy-2-butenyl 2,4-O-diacetyl-6-O-t-
butyldiphenylsilyl-3-O-Levulinoyl-B-D-galactopyranosyl-(1—3)-2-deoxy-2-azido-

4,6-O-[bis(t-Butyl)silylene]-a-D-galactoside(49): A solution of 48 (38.8 mg, 49 umol)
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and 25 (99.0 mg, 133 umol) in methylene chloride (0.5 ml) was cooled to 0 °C in an ice bath.

To the reaction was added TMSOTTf (60 ul of a 230 mM solution in CH,Cls, 5 umol) and the

reaction was let stir for 1 h. The reaction was qunched with 50 pl of Et;N and the solvent was
removed in vacuo. The product was obtained after column chromatography on silica gel (25%
EtOAcC in hexanes) to give disaccharide 49 (62 mg, 42.5 mmol, 96%) as a colorless oil that

turned into a white foam under vacuum.

'H NMR (400 MHz, CDCl3) & 7.59 (d, J = 7.4 Hz, 4H), 7.47 - 7.35 (m, 6H), 5.80 — 5.63 (m,
2H), 5.48 (d, J = 2.8 Hz, 1H), 5.27 (dd, J = 10.2, 7.9 Hz, 1H), 5.02 (dd, J = 10.3, 3.2 Hz, 1H),
4.92 (d, J = 3.3 Hz, 1H), 4.70 (d, J = 7.7 Hz, 1H), 4.63 (s, 1H), 4.27 — 3.95 (m, 6H), 3.86 (dd, J =
10.6, 2.3 Hz, 1H), 3.67 (ddd, J = 26.4, 17.2, 7.7 Hz, 5H), 3.47 (t, = 5.4 Hz, 2H), 2.74 (ddd, J =

35.6, 21.6, 6.4 Hz, 4H), 2.28 — 1.96 (M, 11H), 1.94 — 1.75 (m, 2H), 1.04 — 0.85 (m, 27H).

13C NMR (100 MHz, CDCls) & 206.48, 172.01, 170.35, 170.10, 135.84, 135.79, 132.99, 130.56,
130.29, 130.20, 128.26, 128.15, 128.12, 102.92, 97.79, 78.59, 73.29, 72.87, 72.02, 69.41, 69.12,
67.90, 67.22, 67.05, 66.74, 63.55, 61.57, 58.76, 37.97, 29.92, 28.19, 27.69, 27.44, 26.97, 23.50,

21.08, 20.88, 20.84, 19.31.

HRMS Cacld for [M+Na]": 1480.4441 Found: 1480.4481.

Synthesis of cis-3-(perfluorooctyl)propyloxy-2-butenyl 2,4-O-diacetyl-3-O-

Levulinoyl-B-D-galactopyranosyl-(1—3)-2-deoxy-2-azido-a-D-galactoside(50) and

cis-3-(perfluorooctyl)propyloxy-2-butenyl 2,6-O-diacetyl-3-O-Levulinoyl-B-D-
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galactopyranosyl-(1—3)-2-deoxy-2-azido-a-D-galactoside(51): To solution of 49 (37.5
mg, 25.7 umol) in DMF (0.5 ml) was added EtsN (24 pl, 170 pumol) and EtsN(HF); (14 ul, 85
umol). The reaction was let stir at room temperature for 72 hours. The reaction was diluted with
5 ml water and extracted with methylene chloride (3 x 5 ml) and washed with DI water (3 x 5
ml) and brine (3 x 5 ml). The solvent was removed in vacuo and the crude product was purified
by column chromatography (3% to 5% MeOH in CH,Cl,) to give an inseparable mixture of

compounds 50 and 51 (23 mg, 21.3 pmol, 83%).

'H NMR (400 MHz, cdcl3) & 5.84 — 5.67 (m, 2H), 5.33 (ddd, J = 27.9, 10.4, 7.8 Hz, 2H), 5.01
(ddd, J = 9.8, 8.4, 3.5 Hz, 2H), 4.84 (dd, J = 10.3, 3.0 Hz, 1H), 4.71 (dd, J = 18.0, 8.0 Hz, 1H),
4.39 (dd, J = 11.6, 7.5 Hz, 1H), 4.33 — 4.11 (m, 4H), 4.09 — 3.96 (m, 3H), 3.84 (ddd, J = 17.3,

15.9, 8.1 Hz, 4H), 3.74 — 3.61 (m, 2H), 3.60 — 3.42 (m, 3H), 3.11 (s, 1H), 2.92 (d, J = 30.2 Hz,

1H), 2.84 — 2.33 (m, 6H), 2.27 — 2.00 (m, 12H), 1.87 (td, J = 11.8, 6.1 Hz, 2H).

13C NMR (100 MHz, CDCl3) 6 208.71, 206.32, 172.15, 171.98, 171.38, 171.10, 170.29, 170.24,
130.78, 130.72, 128.13, 128.06, 102.36, 102.21, 97.76, 97.66, 78.66, 78.59, 77.63, 74.28, 74.13,
72.78, 71.36, 69.80, 69.75, 69.58, 69.20, 68.85, 68.78, 67.97, 66.70, 63.68, 63.63, 63.09, 62.86,

62.76, 61.25, 60.86, 58.95, 58.88, 38.46, 37.90, 30.00, 28.07, 21.02.

HRMS Calcd for [M+Na]": 1102.2242 Found: 1102.2212.

Synthesis of cis-3-(perfluorooctyl)propyloxy-2-butenyl 2,3,4,6-tetra-O-acetyl-B-D-

glucopyranosyl-(1—6)-2,4-O-diacetyl-3-O-Levulinoyl-B-D-galactopyranosyl-(1—3)-(
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2,3,4,6-tetra-O-acetyl-B-D-glucopyranosyl-(1—4))-( 2,3,4,6-tetra-O-acetyl-B-D-

glucopyranosyl-(1—6))- ( 2-deoxy-2-azido-3-O-Levulinoyl-a-D-galactoside(10): To

a solution of 50 and 51 (18.7 mg, 17 umol) and 27 (51 mg, 104 umol) in methylene chloride (0.1

ml) at 0 °C was added TMSOTTf( 0.1 ml of a 500 uM solution, 500 nm). The reaction was let stir

for 1 hour. The reaction was quenched with the addition of 50 pl EtsN and the solvent was

removed in vacuo. The residue was purified by column chromatography (3% to 5% MeOH in

CHCI,) to produce either compound 10 or it's 4-O glycoylated regioisomer product (35 mg, 17

umol, 44%) as a colorless oil.

HRMS Calcd for [M+Na]": 2092.5059 Found: 2092.5139.

NMR data is inconclusive, see appendex B.

Automation of pentasaccharide 10

Prepared stock solutions for glycosylation:

Compound Concentration M Solvent
45 0.8 CHCI;
Ftag 0.26 CH.CI,

25 0.4 CH.Cl;

27 0.4 CH.Cl;
TMSOTf 0.23 CH.Cl;

Prepared stock solutions for hydrolysis of levulinoyl ester was 0.25 M hydrazine hydrate and

0.25 M allyl alcohol in 4:1 pyridine/acetic acid.
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Prepared stock solution for cleavage of the silyl groups was 0.1M TBAF and 0.1M AcOH in

DMF.

Necessary reagents: methanol, 80% aqueous methanol, water, DMF, Et;N and toluene. The

platform was set up according to the figure 3.7.

Reaction Reagent FSPE
Block yeachor Rack Rack
®\ ::.:]ctlor 4C5) FO © 0
vial 2 tag
GK O « o O o O
reactor
vial 3 25 Delev
o O o O o O
27 Desilyl
o O o O o O
O O o O o O
o O o O o O
DMF
o O o O o O
EtsN
o O o O o O
H20 H:20

Figure 3.7 Chemspeed platform set up. Not pictured are toluene, methanol, %80 methanol and

water, and TMSOTf. Those are contained in larger reservoirs, except for TMSOTT, which is

kept in a special location for moisture sensitive reagents.
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CHAPTER IV

SUMMARY AND CONCLUSIONS

Conclusions

Trifunctional affinity proteomics probes (TAPPSs) featuring a signal to elicit binding
interactions, a photoactivatable cross-linker to capture those proteins, and a solid resin exploited
for captured protein purification have been synthesized. Initial experiments were to develop a
protocol to use these TAPPs as well as to test the ability of TAPPs to selectively capture known
binding lectins with specificity for control glycans. Incubation, cross-linking, and rinsing
protocols were optimized to selectively capture purified proteins. TAPPs with the perfluorinated
phenylazide photo cross-linker exhibited greater sensitivity, about 3 fold increase in ion current
for an ubiquitous peptide fragment. Furthermore, the fluorinated TAPPs displayed greater
selectivity when comparing ion current of positive controls to negative controls of fluorinated
phenyl azide to phenyl azide. The synthetic route was designed to make use of combinatorial
chemical methods , such as automated synthetic methods of carbohydrates.

Reported in this dissertation is the development of synthetic routes to a series of
monosaccharide donors that could be used on an automated platform to rapidly produce an array
of related oligosaccharides from C. elegans. Attempts to automate, while unsuccessful in
producing the target compound, did show the usefulness of a solution phase platform by
allowing for easy determination of the problem step by TLC analysis, something that is not

possible with solid phase methodology.
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One interesting feature of these oligosaccharides is the heavily branched singular
saccharide units that feature a 3,4, and 6 glycosidic linkage. Investigation of known chemical
methods to affect such a coupling, as well as accomplishing multiple glycoslyations was

achieved.

Future Directions

Investigation into linker effects and resin supports might confer better behavior, in terms
of senstivity and selectivity, of the TAPPs reported in this dissertation. A host of questions can
be raised about the surface density and display of the carbohydrates on the surface of the resin.
The surface of the resin support is considered to be a highly amorphous surface. It's possible the
display of carbohydrates is not very conducive to binding. Considering the results with
capturing purified proteins, maybe the soluble protein has more freedom to distort and find a
conformation for favorable binding. It is also known that conA (the protein used in these
experiments) exhibits shallow binding pockets (Kiessling 1996). Possibly the shallow pockets
on conA make it possible to still bind to mannose that is tethered very near to the surface of the
resin. Potentially, there is some aryl aryl interaction between the probe and the surface of the
resin that could causes the probe to not present well in solution. It's also possible the polystyrene
based probe contracts in the aqueous environment, distorting, collapsing, or in some way having
adverse effects on the display of the carbohydrate on the surface of the resin. A switch to a

differently designed probe that uses latex particles that are known to swell in aqueous systems
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and to linkers that are more hydrophilic (ether based), presentation of the carbohydrates will
improve and the overall outcome of the cross-linking will improve.

The utility of this probe to be create array-like carbohydrate screening with the added
benefit of being able to capture that interaction from live bacteria or a protein mixture would be a
great advancement to current methodology. Another challenge for the TAPPs that would be
interesting to exploit is to use libraries of compounds such as the saccharides from C. elegans
and try to capture surface binding proteins directly from cell culture.

The saccharides from the C. elegans are accessible with current methodolgy. The donors
here should be able to complete the synthesis of the six oligosaccharides. If there was need to
circumvent the acyl migration of the acetate during desilylation because no condition is able to
avoid it, a benzoyl ester could be employed. These esters are well known to resist migration.
The routes described here could easily be modified to do so. Using trimethyl orthobenzoate
instead of trimethyl orthoacetate during orthoester formation of the cis diols in the galactose and
galactosamine based donors, then the corresponding ester after ring opening would be the desired
benzoyl ester.

The automated synthesis of carbohydrates is severally lagged by the access to donor
saccharides in large scale. If convenient routes were available to crystallizable intermediates, as
well as developing methods to access the more rare carbohydrates, then automation could be
realize its full potential. A lot of outlook on automation is focused on the idea that it is to
produce materials. It's possible that automation can be much more useful than as a
manufacturing platform, it could be used to systematically explore carbohydrate chemistry. It
could be employed to study concentration effects, temperature effects, and solvent effects rapidly

if there is access to a handful of carbohydrates on large scale. If better protecting group
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strategies are employed, the ASW could also be used to probe the effects of protecting groups as
well. Currently, the literature is limited to small subsets of reactions with little systematic, or
contiguous, data that allows for complete understanding of the glycosylation reaction. The
reactions are also spread out over the hands of hundreds of chemists who do things just a 'little
different' then the other guy. Automation would be better suited for such data acquisition by
minimizing random error in the glycosylation outcomes as well.

Once a thorough understanding of carbohydrate chemistry is realized, and as chemical
biological methodology develops, probing the functions of carbohydrates in biological systems
will become more rapid and easier. Developing our understanding of disease, treatments, and

generally rounding out the scientific paradigm.
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'H NMR spectrum of compound 16 in CDCI3 at 400 MHz.
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ind 16 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 18 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 18 in dg-DMSO at 100 MHz.
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'H NMR spectrum of compound 21 CDCl; at 400 Mhz.
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3C NMR spectrum of compound 21 CDCl; at 100 Mhz.
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'H NMR spectrum of compound 22 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 22 in CDCI3 at 100 MHz.
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3¢ NMR spectrum of compound 23 in CD3;0D at 100 MHz
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'H NMR spectrum of compound 21 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 21 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 22 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 22 in CDCI3 at 100 MHz.
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3C NMR spectrum of compound 23 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 24 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 24 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 25 in CDCI3 at 400 MHz.
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'H NMR spectrum of compound 30 in CDCI3 at 400 MHz.
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'H NMR spectrum of compound 31 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 31 in CDCI3 at 100 MHz.
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3C NMR spectrum of compound 35 in CDCI3 at 100 MHz.
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3C NMR spectrum of compound 39 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 41 in CDCI3 at 400 MHz.
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3C NMR spectrum of compound 42 in CDCI3 at 100 MHz.
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'H NMR spectrum of compound 45 in CDCI3 at 400 MHz.
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APPENDIX C. CHAPTER 2 LC-ESI CHROMATOGRAMS

This section contains the extracted ion chromatograms for the cross linking experiments
of chapter 1l. The top plot is the integrated peak that corresponds to matched peptide fragment
from Con A. The bottom is the parent mass spectra for the middle of the integrated region. The

matched peptide is VGLSASTGLYK.
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Representative Matched Peptide Report

litiiveis Mascot Search Results
Peptide View

MS/MS Fragmentation of VGLSASTGLYK
Found in gi|72333|pir|CVJB, concanavalin A - jack bean

Match to Query 6692 (548.60.2+) Cmpd 2672, +MSn(548.6). 16.30 min
From data file C: Xcalibur'data' Randy Pohl\083012_rb'\mgfFM1_083012_TN79.raw.mgf

Click mouse within plot area to zoom in by factor of two about that point
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Monoisotopic mass of neutral peptide (Mr): 1084.60
Fixed modifications: Carbamidomethyl (C)
Ions Score: 45 Matches (Bold Red): 23/86 fragment ions using 52 most intense peaks

#/ b | b | BY | b Seq.| y | ¥y | ¥ |y ¥ | O
1/100.08| 50.54 Al 11
2/157.10| 79.05 G |996.54|498.77(979.51 |490.26|978.53 |489.77 |10
3/270.18|135.59 L |939.52/470.26/922.49 461.75/921.50|461.26| 9
4|357.21|179.11/339.20/170.11| S |826.43|413.72/809.40 |405.21 808.42|404.71| 8
5/428.25|214.63 |410.24|205.62| A |739.40(370.20/722.37|361.69|721.39|361.20| 7
6/515.28/258.15|497.27/249.14| S 668.36|334.68/651.34|326.17 650.35/325.68| 6
71616.33|308.67/598.32|299.66] T |581.33|291.17/564.30/282.66|563.32|282.16 5
8/673.35|337.18|655.34/328.17| G |480.28|240.65|463.26 |232.13 4
9/786.44|393.72|768.43|384.72) L 423.26|212.13 406.23 |203.62 3
10/949.50|475.25/931.49|466.25| Y |310.18|155.59/293.15|147.08 2
11 K [147.11| 74.06 130.09 65.55 1
g OB e
S e
&
e e ittt
I2t"10ll'l5(;0'l"7t'l>0l"llobo
RMS error 420 ppm Mass (Da)

NCBI BLAST search of VGLSASTGLYK
(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)
Other BLAST web gatewavs
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APPENDIX D. CHAPTER 2 MALDI-QTOF MASCOT RESULTS

| e e B T s
[ B e S =

Number of Hits

— T
100 150

Prohability Based Mowse Score

Figure D.1 MASCQOT results for TAPP-HMan MALDI-QTOF experiments. Score for 95%
confidence cutoff is 57. Matched proteins at 116 and 134 correspond to two different
concanavalin A entries in the database. The score at 134 matched fragment
'R.VSSNGSPQGSSVGR.A" while this same short sequence in the match 116 had
'R.VSSNGSPEGSSVGR.A' so this fragment didn't match, lowering the score.

Number of Hits

I I I I I I I I k

75 100
Prohahility Based Mowse Score

Figure D.2 MASCOT results for TAPP-HGal MALDI-QTOF experiments. Score for 95%
confidence cutoff is 47. Score for matched protein is 94 and belongs to concanavalin A.
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